Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Vector Walk

Age 14 to 18
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

Why do this problem?

This problem encourages students to think about vectors as representing a movement from one point to another. The need for coordinate representation of points will emerge automatically and the problem naturally requires an interplay between geometry and algebra.

Possible approach

 
Set students the challenge to investigate possible end points when combining steps of vectors $b_1$ and $b_2$ in a vector walk. Some students will prefer to work algebraically while others will wish to represent the problem geometrically; by encouraging students to work in groups with others who have different preferred methods, rich mathematical thinking can emerge.
Students should aim to describe geometrically the set of points which can be made by combining the two vectors.
 
Once students have successfully described the set of points made from combinations of $b_1$ and $b_2$, set them the two challenges - to find other pairs of basic vectors which yield the same possibilities, and to find a pair of basic vectors which will never lead to the points found in the first part of the question.

 

Key questions

What do the points you can reach with $b_1$ and $b_2$ have in common?

Can you describe the resulting set of points geometrically (i.e. describe them clearly without algebra)?
 

Possible support

Work systematically combining $b_1$ steps with $b_2$ steps, recording the points visited.

Investigate the effect of changing the order in which the steps are taken.

 

Possible extension

Polygon Walk explores vector walks which form polygons around the origin.

 



 

You may also like

Flexi Quads

A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?

A Knight's Journey

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

8 Methods for Three by One

This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo