Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cross with the Scalar Product

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem helps to reinforce students' understanding of the vector and scalar product by encouraging them to think about how they are related geometrically.

Possible approach

Perhaps begin with a recap of the scalar and vector product to make sure students are clear about what each product is and how it is calculated.

Then set the first challenge, to explore and describe geometrically the set of vectors ${\bf u}$ with the property that ${\bf u}\cdot{\bf v}=0$. If students choose to consider the problem algebraically, ask them to interpret their findings geometrically.

Once students have reached their conclusions, introduce the second part of the problem. Encourage students to consider how their geometrical insights from the first part relate to what they are being asked to do in the second part of the problem. Identifying which of the four vectors could result from the cross product of a vector with $\bf v$ should be straightforward and not require lots of difficult algebra.

Finally, the problem asks students to find a method to quickly construct other vectors which result from the cross product of vectors with $\bf v$. Encourage students to think of how to generate such vectors from vectors they have already found, using the properties of the scalar product.

Key questions

What do the vectors $\bf u$ such that $\bf u \cdot \bf v =0$ have in common?
How can you consider this set of vectors $\bf u$ geometrically?
What do the vectors $\bf w$ resulting from the cross product of $\bf v$ with other vectors have in common?

Possible extension

Find a method to quickly generate sets of vectors which are perpendicular to $\pmatrix{a\cr b\cr c}$

Possible support



You may also like

Flexi Quads

A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?

Flexi Quad Tan

As a quadrilateral Q is deformed (keeping the edge lengths constnt) the diagonals and the angle X between them change. Prove that the area of Q is proportional to tanX.

Air Routes

Find the distance of the shortest air route at an altitude of 6000 metres between London and Cape Town given the latitudes and longitudes. A simple application of scalar products of vectors.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo