Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Spectrometry Detective

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

  • Warm-up
  • Try this next
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

This problem involves mathematical reasoning concerning elements of chemistry. For an introduction to mass spectrometry read our article Inspect Your Gadgets.


A diatomic gas of an element with a single stable isotope is analysed in a mass spectrometer. How many peaks will there be? How many peaks will there be if the element forming a diatomic gas has $2$ or $3$ stable isotopes?

When water is analysed in a mass spectrometer there are peaks at relative atomic mass $17$ and $18$. What chemicals do these peaks correspond to? Why are there no peaks at $1$ and $16$?

A compound is analysed and has peaks at $35, 37, 70, 72$ and $74$. What is this compound?

Another compound has peaks at $12, 13, 14, 15, 16$. What might this be? What is it definitely not?

Another compound has peaks at $14, 15, 16, 17$. What might this be? What is it definitely not?

A mixture of two chemicals is analysed and has peaks at $35, 36, 37, 38$ and $40$. What might this be? What is it definitely not?

Extension: A final compound has peaks at (from tallest to smallest) $31, 45, 29, 27, 46, 43, 26, 30, 15, 42, 28, 19, 25, 14, 13, 41, 47, 44, 17, 24, 18, 33, 12$. Can you suggest a likely candidate for the compound? What could the various peaks correspond to?

Other mathematical chemistry problems can be found on the chemNRICH pages.






NOTES AND BACKGROUND
This problem gives the opportunity to practise analysing results from mass spectrometry experiments. In this important process compounds are heated and the relative mass and frequency of the resulting fragments are measured. From the mass-spectrum it is often possible to determine the chemical composition of the original compound. To do this requires a knowledge of the atomic mass and relative abundance of the isotopes of the elements. There is a strong experimental input to this process as more complex molecules, such as long hydrocarbons break into a wide variety of fragments which complicated the analysis.

Source of data:

Mass Spectra by NIST Mass Spec Data Center, S.E. Stein, director, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 , Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved May 22, 2009).

You can read more about mass spectrometry at http://en.wikipedia.org/wiki/Mass_spectrometry



You may also like

Teams

Two brothers belong to a club with 10 members. Four are selected for a match. Find the probability that both brothers are selected.

Crossing the Bridge

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Binomial Coefficients

An introduction to the binomial coefficient, and exploration of some of the formulae it satisfies.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo