Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

What Salt?

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

Having constructed the Born-Haber cycles, and having worked out the relevant data, look at how the two cycles differ. There should be one key point that changed enormously, to make the formation of NaCl$_2$ so unfavourable. Think what the change would be for a NaCl$_3$, and whether this would be offset by the lattice enthalpy. Generally, we can draw a conclusion for NaCl$_n$...

Although the Born-Lande equation will be new to almost everyone, this question involves little more than plugging in given data to the equation. Note that the Born-Lande calculates lattice enthalpies based on a purely electrostatic model, and consequently always underestimates the true lattice enthalpy. What extra factor hasn't been taken into account? Why would this factor increase for larger halides?

You may also like

A Method of Defining Coefficients in the Equations of Chemical Reactions

A simple method of defining the coefficients in the equations of chemical reactions with the help of a system of linear algebraic equations.

Mathematical Issues for Chemists

A brief outline of the mathematical issues faced by chemistry students.

Reaction Rates

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo