Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Clear as Crystal

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Teachers' Resources

  • Warm-up
  • Try this next
  • Read: mathematics
  • Read: science
  • Explore further
 

Crystals can be represented mathematically by infinite lattices of points occupied by atoms or ions.The symmetry properties of crystal lattices are physically very important and mathematically very fascinating. In this problem we investigate the symmetries of these lattices mathematically.

A crystal symmetry operation is a transformation which when applied to the vector positions of the ions causes the following:

1. The points in space occupied by atoms or ions before and after the transformation are identical.

2. Each atom or ion in the crystal shifts onto the position of an identical atom or ion.

3. The distance between any neighbouring pairs of atoms or ions is unchanged before and after the transformation.

Which of the following are sometimes always or never true? If always or never, give a proof. If sometimes, give an example where it works and an example where it does not. You might want to focus your attention on BCC or FCC packing, although feel free to invent mathematical lattices of your own.

a) A rotation about a given point is a symmetry.

b) A reflection through a plane which does not pass through any of the lattice points is a symmetry.

c) A shear which maps the lattice onto itself is a symmetry.

d) For a crystal lying on an integer lattice, the translation by $(l/2, m/2, n/2)$ is a symmetry, where $l, m, n$ are integers.

e) Repeated application of the same symmetry will eventually restore the crystal to its original state.

f) If $T_1({\bf v})$ and $T_2({\bf v})$ are both symmetry operations then the combination $T_1(T_2{\bf v}) $ is a symmetry operation.

g) If neither $T_1({\bf v})$ nor $T_2({\bf v})$ is a symmetry operation then $T_1(T_2({\bf v}))$ is not a symmetry operation.

h) Application of a symmetry operation leaves at least one point fixed.

i) Application of a symmetry operation leaves exactly $3$ points fixed.

Can you invent any mathematical lattices with unusual symmetry properties?
 

You may also like

A Method of Defining Coefficients in the Equations of Chemical Reactions

A simple method of defining the coefficients in the equations of chemical reactions with the help of a system of linear algebraic equations.

Mathematical Issues for Chemists

A brief outline of the mathematical issues faced by chemistry students.

Reaction Rates

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo