Or search by topic
n | 1 | 19 | 20 | 51 | 57 | 80 | 82 | sum | Difference |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 19 | 20 | 51 | 57 | 80 | 82 | 310 | 0 |
2 | 1 | 361 | 400 | 2601 | 3249 | 6400 | 6724 | 19736 | 0 |
3 | 1 | 6859 | 8000 | 132651 | 185193 | 512000 | 551368 | 1396072 | 0 |
4 | 1 | 130321 | 160000 | 6765201 | 10556001 | 40960000 | 45212176 | 103783700 | 0 |
5 | 1 | 2476099 | 3200000 | 345025251 | 601692057 | 3276800000 | 3707398432 | 7936591840 | 0 |
6 | 1 | 47045881 | 64000000 | 17596287801 | 34296447249 | 2.62E+11 | 3.04E+11 | 6.18E+11 | 0 |
7 | 1 | 893871739 | 1280000000 | 8.97E+11 | 1.95E+12 | 2.10E+13 | 2.49E+13 | 4.88E+13 | 36021585600 |
8 | 1 | 16983563041 | 25600000000 | 4.58E+13 | 1.11E+14 | 1.68E+15 | 2.04E+15 | 3.88E+15 | 1.28E+13 |
n | 2 | 12 | 31 | 40 | 69 | 71 | 85 | sum | |
1 | 2 | 12 | 31 | 40 | 69 | 71 | 85 | 310 | |
2 | 4 | 144 | 961 | 1600 | 4761 | 5041 | 7225 | 19736 | |
3 | 8 | 1728 | 29791 | 64000 | 328509 | 357911 | 614125 | 1396072 | |
4 | 16 | 20736 | 923521 | 2560000 | 22667121 | 25411681 | 52200625 | 103783700 | |
5 | 32 | 248832 | 28629151 | 102400000 | 1564031349 | 1804229351 | 4437053125 | 7936591840 | |
6 | 64 | 2985984 | 887503681 | 4096000000 | 1.08E+11 | 1.28E+11 | 3.77E+11 | 6.18E+11 | |
7 | 128 | 35831808 | 27512614111 | 1.64E+11 | 7.45E+12 | 9.10E+12 | 3.21E+13 | 4.88E+13 | |
8 | 256 | 429981696 | 8.53E+11 | 6.55E+12 | 5.14E+14 | 6.46E+14 | 2.72E+15 | 3.89E+15 | |
What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?
What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.