Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Diminishing Returns

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem

The problem offers opportunities to think about area, proportion and fractions, while offering an informal introduction to the mathematics of infinity and convergence which would not normally be met by younger students, to tempt their curiosity.

Possible approach


Show the first image from the problem for a short while and invite students to look at it in silence. Then hide the image and give them some time to reflect on what they saw and then discuss with a partner, and finally share with the whole class.


"What did you see?"
"Did anyone see it differently?"

Once students have shared their thoughts, show them the image again to see how their impressions of it compared with the actual picture. Then pose the following question:

"What questions might a mathematician want to explore?"
Give them some time to come up with some suggestions. If they are struggling to think of any, there are some suggestions in the "Key questions" section below.
 
Challenge students to work out the proportion of the square that is shaded blue at each stage. There are three more images in the problem that you could use in the same way - invite students to create their own versions, and to work out the proportion taken up by each size of triangle. This could make a lovely wall display using colourful paper and explanations of the reasoning used to work out the relationships between different triangles.

You might like to finish off with a discussion about what would happen if the patterns carried on forever. This is explored some more in the problem Vanishing Point.
 

Key questions

  • For the first stage of the pattern, how many blue triangles are there? What about at the second... third... fourth stage?
  • How do the areas of each blue triangle compare with the next size up?
  • How could I create the image from coloured paper?
  • What proportion of the image is shaded blue?
  • What if it carried on forever?

 

Possible support

In the Teachers' Resources to Inside Seven Squares there is a demonstration of how paper folding could be used to help students to create the shapes, and see the relationship between areas.

 

Possible extension

Vanishing Point uses the same starting point and goes on to explore the question of continuing the sequence indefinitely.

 

You may also like

Tweedle Dum and Tweedle Dee

Two brothers were left some money, amounting to an exact number of pounds, to divide between them. DEE undertook the division. "But your heap is larger than mine!" cried DUM...

Sum Equals Product

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so for any whole numbers?

Special Sums and Products

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo