Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Human Food

Age 7 to 14
Challenge Level Yellow star
  • Problem
  • Student Solutions
  • Teachers' Resources


Scott Lewington, age 11, Lea Manor High School and Ling Xiang Ning, Allan, age 12, Raffles Institution, Singapore solved the Human Food problem.

They found square based pyramids with the same number of cans as one triangular stack with a depth of one can (a triangular number of cans) and then three triangular stacks to make up of the same number of cans altogether.

The triangular numbers are: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105,...

The square based pyramid numbers are: 1, 5, 14, 30, 55, 91, 140, 208,...

As we can see, there are two numbers that appear in both lists, 55 and 91. This means that both of them are possible to be a square pyramid (with a 5 by 5 base or a 6 by 6 base) and a triangular stack (with a base of 10 or of 13). Now, we just have to find the three triangular stacks 55 and 91 cans can be made into.

For 55 cans, it could be made into triangular stacks of 6, 21 and 28 (T 3 + T 6 + T 7 ).

For 91 cans, it could be made into triangular stacks of 10, 15 and 66 (T 4 + T 5 + T 11 ) or of 3, 10 and 78 (T 2 + T 4 + T 12 ) or of 15, 21 and 55 (T 5 + T 6 + T 10 ) or 10, 36 and 45 (T 4 +T 8 + T 9 ).

There are other possible solutions. This type of investigation can best be pursued using a spreadsheet with formulae for the different types of patterned numbers in different columns. This leads to conjectures about the algebraic relationships between different patterned numbers which may be proved algebraically.


You may also like

Alphabet Blocks

These alphabet bricks are painted in a special way. A is on one brick, B on two bricks, and so on. How many bricks will be painted by the time they have got to other letters of the alphabet?

Summing Consecutive Numbers

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Forgotten Number

I have forgotten the number of the combination of the lock on my briefcase. I did have a method for remembering it...

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo