Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Garden Fence

Age 14 to 16
ShortChallenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Solutions

In the diagram below, triangle $ABC$ represents the garden, $CD$ represents the fence and $E$ is the foot of the perpendicular from $D$ to $AC$.



The two sections of the garden have the same perimeter so $AD$ is $10$m longer than $DB$. Hence $AD=30$m and $DB=20$m.

Triangles $AED$ and $ACB$ are similar so $\frac{AE}{AC}=\frac{AD}{AB}=\frac{30}{50}$. Hence $AE=\frac{3}{5}\times 30$m $=18$m. So $EC=(30-18)$m $=12$m.

Also $\frac{ED}{CB}=\frac{AD}{AB}=\frac{30}{50}$. Hence $ED=\frac{3}{5}\times 40$m $=24$m.

Finally, by Pythagoras: $CD^2=EC^2+ED^2=(12^2+24^2)$m$^2=5\times12^2$m$^2$. So the length of the fence is $12\sqrt{5}$m.
This problem is taken from the UKMT Mathematical Challenges.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Some(?) of the Parts

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Coke Machine

The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design...

Contact

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo