Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Magic Octahedron

Age 11 to 14
ShortChallenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Solutions

Considering odd and even vertices
The students at Lyneham Primary School considered odd and even vertices. 
Imagine that the total at each vertex was an odd number. Then $G + H + 9 + 3$ is odd, so $G + H$ is odd, so $G$ and $H$ are an odd number and an even number.

$F + G + H + 5$ should also be odd, so $F$ must be odd.

But $F$ and $G$ or $H$ can't both be odd, because four of $F, G, H, J$ and $K$ are $2, 4, 6$ and $8,$ so at most one of them can be odd!

So the total at each vertex must be an even number, which means that $G + H + 9 + 3$ is even, so $G + H$ is even, so $G$ and $H$ are both even (as they can't both be odd).

Then $F + G + H + 5$ should also be even, so $F$ must be odd. 

Since we can have at most one odd letter, all of the others must be even, and you can check that then the total at each vertex is even.

Then $9 + 3 + K + J = 5 + 3 + K + H$, which simplifies to $4 + J = H$. So $H$ and $J$ must be either $2$ and $6$ respectively or $4$ and $8$ respectively ($F$ is odd, so it must be the only letter whose number is not in the list).

Also $G + H + 9 + 3 = 5 + 3 + K + H$, which simplifies to $G + 4 = K$. So $G$ and $K$ must be either $2$ and $6$ respectively or $4$ and $8$ respectively.

That means that $G$ and $J$ are the two smaller numbers - they are either $2$ and $4$ respectively or $4$ and $2$ respectively. So $G + J = 6$.


Ben's solution
Ben at Lyneham Primary School solved the problem like this:
Starting in the centre and bottom vertices, $G + H + 9 + 3 = J + K + 9 + 3$.
This means $G + H = J + K$.

The only way this is possible with the numbers $2, 4, 6, 8$ and a random odd number is by having $2 + 8$ and $4 + 6$. The other number is odd because if it was even then some vertices would be odd and others would be even (see above).

So since $2 + 8$ or $4 + 6 = 10$, $10 + 12$ is the vertex total, $22$.

Then moving to the right vertex, $5 + 3 + H + K$ being $22$, $H + K = 22 - (5 + 3).$ So $H + K = 14 = 8 + 6$, leaving $G$ and $J$ with $2$ and $4$, so $G + J = 6$.

This problem is taken from the UKMT Mathematical Challenges.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Calendar Capers

Choose any three by three square of dates on a calendar page...

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo