Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Special Sums and Products

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions

There were many good solutions to this one, and they are all special cases of the solution given by Syed Farhan Iskandar, age 12, of Foxford School and Community College. We are looking for a formula which gives pairs of numbers $a$ and $b$ such that $a + b$ is a factor of $ab$. Here is Farhan's method:

If the answer to the product divided by the sum is $s$ then

$\begin{eqnarray} \\ s(a + b) &=& ab \\ sa + sb &=& ab \\ sa &=& ab - sb = b(a - s) \\ b &=& \frac{sa}{a - s}\quad (1). \end{eqnarray}$

We can take any number $a$ and any whole number $s$ where $s \neq a$ and Farhan's formula gives a pair of numbers with the required property.

[Note that $a $ and $b$ do not have to be whole numbers and also that, if $s > a$, we introduce negative numbers, but we'll come back to that later.

Farhan gives the following examples:

$\begin{eqnarray} \\ a&=&2,\ s=1\ {\rm \ gives }\ b=2 \\ 2 + 2&=&4,\ 2\times 2\ =\ 4 \ {\rm and }\ 4/4 = 1 = s. \end{eqnarray}$

$\begin{eqnarray} \\ a&=&6,\ s=2 {\rm \ gives }\ b=3 \\ 6 + 3 &=&9,\ 6\times 3 = 18\ {\rm and }\ 18/9 = 2 = s. \end{eqnarray}$

$\begin{eqnarray} \\ a&=&12,\ s=3 {\rm \ gives }\ b=4 \\ 12 + 4 &=&16,\ 12\times 4 = 48\ {\rm and }\ 48/16 = 3 = s. \end{eqnarray}$

Davide Colli, age 13, Scuola Media Besozzi, who lives near Milan in Italy, showed that the number pair $a$ and $a(a - 1)$ is a solution for all values of $a$ (except $a = 1$). This is a special case of (1) with $s = a - 1$.

The Mount School York sent lots of examples taking the second number to be a multiple of the first. Charis Campbell, Christianne Eaves, Sheila Luk and Cheryl Wong proved that the pattern always works for two equal even numbers.

$$N + N = 2N, \ N\times N = N^2 \ {\rm and} \ N^2/2N = N/2$$

which is a whole number if and only if $N$ is even.

Sheila, Cheryl and Peach from year 10 gave the formula

$\begin{eqnarray} \\ a&=&A(k + 1),\ s = Ak, \ b=Ak(k + 1) \\ a + b &=& A(k + 1)^2, \ ab = A^2k(k + 1)^2 {\rm and }\ ab/(a + b) = Ak = s. \end{eqnarray}$

Again this is a special case of Farhan's result and it fits the pattern when $A$ and $k$ are whole numbers.

Farhan's formula given in (1) is not restricted to pairs of positive whole numbers as the following examples show:

$\begin{eqnarray} \\ a = 2, s=5 {\rm \ gives }\ b = (-10/3) \\ a + b = (-4/3),\ ab = (-20/3) \ {\rm and }\ ab/(a + b) = 5 = s. \end{eqnarray}$

$\begin{eqnarray} \\ a = 1/2, s=3 {\rm \ gives }\ b = (-3/5) \\ a + b = (-1/10),\ ab = (-3/10) \ {\rm and }\ ab/(a + b) = 3 = s. \end{eqnarray}$

You may also like

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Have You Got It?

Can you explain the strategy for winning this game with any target?

Counting Factors

Is there an efficient way to work out how many factors a large number has?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo