Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Ratios and Dilutions

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

 
This problem provides a context within which to explore fractions and proportionality. Seeking concentrations which can be made in different ways and justifying why some concentrations can't be made at all gives practice on working with equivalent fractions, ratios, factors and multiples.

 

Possible approach

 
Begin by introducing the idea of a solution with strength 100000 cells/ml. Make sure everyone is clear about what this means.

Then ask the class to imagine mixing 100ml of this solution with 100ml of pure water. Students could record any working out and their answer on individual whiteboards. Now show students the interactivity, and explain how it can be used to perform a single dilution, then use it to check their answer. Take time to discuss how they got to the correct answer.

Demonstrate that the interactivity can measure multiples of 10ml of liquid, up to 100ml - the scientific context of this could be using a dropper that measures 10ml at a time.

 

Ask students to come up with questions they would like to explore using the interactivity - some suggested questions appear in the problem. Then allow them some time to investigate, using the interactivity to check the predictions that they make.

Once students are competent at working with solutions created using one dilution, use the interactivity to perform a series of two dilutions. Perhaps start by giving them a couple of concentrations to work out, using individual whiteboards as before, and using the interactivity to check. At the end of the problem there are some suggested concentrations they could be asked to make.

Pairs of students could take it in turns to create a concentration using two dilutions, and then challenge their partner to work out the dilutions they used.

Finally, the problem challenges students to investigate impossible dilutions.
 

 

Key questions

If I combine $a$ ml of solution with $b$ ml of water, how does the concentration change?
What happens when several dilutions are performed one after another?
Does the order in which I do the dilutions matter?

Possible extension

The problem Investigating the Dilution Series uses the same context but explores four steps of dilution instead of just one or two. Exact Dilutions extends these same ideas further.

Possible support

 

Mixing Lemonade investigates the strengths of different solutions informally and may provide a useful starting point.

 

You may also like

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Contact

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo