Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Dicey Dice

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Steve writes this about his problem:

We will need to use a mixture of common sense and conditional probability to solve this problem, as there is no obvious systematic point to get started with this anaysis. The key equation we need is:
$$
P(A> B) = P(A> B|A=1)P(A=1)+\dots +P(A> B|A=6)P(A=6)
$$
An obvious starting point would be to consider the case where dice B has only one number on it, 3, say.

For A to have a greater than 50% chance to beat B, A must have 4 higher numbers, Say 4444xx.

For B to have greater than 50% chance to beat C, C must have 4 lower numbers, say xx2222. Can C beat A? If C = 662222 and A = 444411 then P(C beats A) = 1/3 x 1 + 2/3 x 1/3 = 5/9

To find dice with equal probabilities after a bit of fiddling around we settle on the answer 5/9. The trick is to adjust down any dice which are too strong and up any dice which are too weak. There is some flexibility to adjust numbers without altering the probabilities for any other wins/losses.

An answer is

A 5 5 4 4 1 1
B 4 4 3 3 3 2
C 6 6 2 2 2 2

Explicitly, we have
$$
\begin{eqnarray}
P(A> B) &=& P(A> B|A=5)\times \frac{1}{3}+P(A> B|A=4)\times \frac{1}{3}+P(A> B|A=1)\times \frac{1}{3}\\
&=&1\times \frac{1}{3}+ \frac{2}{3}\times \frac{1}{3}+0\times\frac{1}{3}\\
&=& \frac{4}{9}
\end{eqnarray}
$$


You may also like

Rain or Shine

Predict future weather using the probability that tomorrow is wet given today is wet and the probability that tomorrow is wet given that today is dry.

Squash

If the score is 8-8 do I have more chance of winning if the winner is the first to reach 9 points or the first to reach 10 points?

Snooker

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo