Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

How Would You Score It?

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem offers a fairly informal introduction to the importance of considering spread as well as average when working with data. Students will intuitively make arguments for particular winners, and these intuitive ideas can be honed into more formal statistical statements about why some guesses should be valued more highly than others.

Possible approach

Display the question with the five guesses and give students a short amount of time to rank the five guesses in order.

Collect a few of the students' rankings on the board.

Now give students time to look at the results in more detail and to make a case for their preferred ranking. Explain that they will be expected to justify their ranking to the rest of the group, so they will need to think about the arguments others will make, and how to counteract them.

After students have had time to consider their arguments, give those with differing views a chance to convince the class of the merits of their ranking. (If there is consensus within the class, challenge them to convince you.)

Key ideas that should emerge are:

  • whether the true value lies within the range suggested
  • how far the true value is from the middle of the range suggested
  • how wide the suggested range is

Finally, challenge students to use these key ideas to produce a fair scoring system that could be published in advance of future "Guess the Weight" competitions. They could test their scoring system to check it agrees with their suggested rankings, modifying it if needs be, or they might reject their initial ranking if they believe their proposed scoring system is fairer.

Perhaps students could also use their system to score a real "Guess the Weight" competition.

Possible support

Use the analogy of hitting a target in archery to help students to think about how to rank the guesses. "Is it easier to hit a large or a small target?" "Do you score more when you hit the target at the edge, or in the middle?"

Possible extension

Retiring to Paradise provides a different context for considering the importance of spread as well as average when working with data.

You may also like

Bat Wings

Two students collected some data on the wingspan of bats, but each lost a measurement. Can you find the missing information?

Kate's Date

When Kate ate a giant date, the average weight of the dates decreased. What was the weight of the date that Kate ate?

Balancing the Books

How many visitors does a tourist attraction need next week in order to break even?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo