Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Torus Patterns

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
This problem naturally follows on from Painting By Numbers, although it can be attempted independently of this.

A torus may be represented by a square with the points on the two opposite sides identified.

In this problem we consider colouring in line drawings made on the surfaces of various tori.

They are to be coloured according to the two rules:

1) No two regions of the same colour can share a border

2) Two regions of the same colour are allowed to meet at a point.

Consider the following three patterns corresponding to three tori



How many colours would be needed to colour the associated tori using the colouring rules above? You might wish to try to visualise the patterns on the tori, but this is not necessary.

Explore some other patterns on tori and how many colours would be needed to colour various patterns.

It is possible to create patterns which require 4, 5, 6 and 7 distinct colours to colour.

Can you create examples of such patterns?

Extension: Consider the question of painting by numbers on a Mobius strip




You may also like

Where Do We Get Our Feet Wet?

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Links and Knots

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots, prime knots, crossing numbers and knot arithmetic.

Earth Shapes

What if the Earth's shape was a cube or a cone or a pyramid or a saddle ... See some curious worlds here.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo