Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Gran, How Old Are You?

Age 7 to 11
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Gran, How Old Are You?


Mum and her four children live with Gran at 13 Drywater Street.

One day, Charlie, who is the third child, asked, "Gran, how old are you?"

Gran answered, "My Grandmother would have said 'As old as my tongue and a little older than my teeth!' but I will tell you how to work out my age."

"If you multiply Mum's age with your age and with the ages of your brother and sisters you will get the answer $111 111$.

If you add Mum's age along with the ages of all you four children the total will be my age."

Charlie worked this out very quickly, because he knew his Mum's age, his age and the ages of his brother and sisters.

"Oh Gran!" he called as he ran off to play outside, "You are old!"

pic

How old was his Gran?

Why do this problem?

This problem involves unknowns, and encourages algebraic thinking, but does not rely on using letters to represent the unknowns. Instead, it encourages multiple approaches, so learners might use trial and improvement, for example. It is an ideal opportunity to reinforce the idea that there isn't just one way to solve a problem, although some methods might end up being more efficient than others (for most people). This challenge also consolidates understanding of multiplication and division being inverses of each other, and it might offer a chance to discuss divisibility rules.

Possible approach

Introduce the problem to the class as it stands, perhaps orally, or by projecting the page onto the whiteboard. Give everyone time to think about how they might approach it in pairs or small groups, being very careful not to say anything else at all. This may feel very uncomfortable for some children (and for you!) but try not to help them at this stage.
 
After a suitable length of time, bring everyone together and invite comments on how the problem might be tackled. Once again, try not to advocate one method but once  several ways have been discussed, explain that you will give more time for working on the solution now. Each group can choose how they go about the problem so they could use a method that someone else has suggested.
 
After more time, you could bring the whole class together again to talk about progress so far. Then allow a period of time for further work on the solution and perhaps also for each pair/group to summarise their method/s on a poster, including reflection on how well their method/s worked.
 
The last part of the lesson could be used for groups to look at each other's posters and compare solutions. This could lead into a discussion about the advantages and disadvantages of each method.

Key questions

What information do you know?
How could you use this to try and find a solution?
What could you try first?
How old do you think Charlie's mother could be?
How old do you think Charlie could be?

Possible extension

Learners could find numbers with interesting factors and make up their own similar problem. Does their own problem have a unique solution? How do they know?

Possible support

Some children may find a calculator useful.

You may also like

Guess the Dominoes

This task depends on learners sharing reasoning, listening to opinions, reflecting and pulling ideas together.

Factor Track

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo