Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Speedo

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions
In this question, we need to make some assumptions about acceleration. A good model is that the power output of a car is a constant throughout the motion. However, this makes the calculations quite complicated. If instead we assume acceleration is constant throughout the motion, this makes the equations simpler and easier to use.



1) The least possible time spent on this section corresponds to accelerating to $100\text{ km h}^{-1}$, maintaining this speed and then decelerating to $10\text{ km h}^{-1}$ at the end of the section.

It takes $10\text{s}$ for the car to accelerate constantly from $0$ to $60\text{ km h}^{-1}$, so it will take $\frac{100}{60} \times 10 = 16 \frac{2}{3}\text{s}$ to accelerate from $0$ to $100\text{ km h}^{-1}$. Note that $100\text{ km h}^{-1}$ is roughly $28\text{ m s}^{-1}$, since we need to work in metres per second.

The distance travelled in this time is $\text{average speed} \times \text{time} = \frac{0 + 28}{2} \times 16 \frac{2}{3} \approx 233\text{m}$.

Similarly, the time taken for the car to decelerate from $100\text{ km h}^{-1}$ to $10\text{ km h}^{-1}$ is $\frac{90}{60} \times 10 = 15\text{s}$.

The distance travelled in this time is $\frac{28 + 2.8}{2} \times 15 \approx 231\text{m}$.

Then the total distance travelled is $500\text{m}$, so the distance that the car travels at the constant speed of $100\text{ km h}^{-1}$ is $500 - 233 - 231 = 36\text{m}$. Then the time taken is $\frac{\text{distance}}{\text{speed}} = \frac{36}{28} \approx 1.3\text{s}$.

Then the total time taken is $16 \frac{2}{3} + 1.3 + 15 \approx 33\text{s}$.


The greatest time involves spending lots of time travelling at a very low speed, say $1\text{ km h}^{-1}$, then accelerating  to $50\text{ km h}^{-1}$ and then decelerating to the very low speed again. The time taken is $2\times\frac{49}{6}s = 16.3\text{s}$ for the accelerating/decelerating, and $1380\text{s}$ for the long section at the low speed, taking $\approx 1400\text{s}$ in total!



2) Suppose we were starting this section at $10\text{ km h}^{-1}$. The shortest time comes from accelerating straight away to $50\text{ km h}^{-1}$ and then keeping the speed constant. This takes $38\text{s}$ in total. The greatest time involves remaining at $10\text{ km h}^{-1}$ and then accelerating to finish at $50\text{ km h}^{-1}$. This takes $167\text{s}$.



3) Given that the car is travelling at $50\text{ km h}^{-1}$ when we start this section, the maximum number of times we can record a speed of $10\text{ km h}^{-1}$ is $5$, as the car covers $\frac{500}{9}\text{m}$ when accelerating from $10\text{ km h}^{-1}$ to $50\text{ km h}^{-1}$ or decelerating from $50\text{ km h}^{-1}$ to $10\text{ km h}^{-1}$.



4) From the last question, we know that must have to start at $50\text{ km h}^{-1}$: after $9$ accelerations and decelerations to and from $10\text{ km h}^{-1}$, we'll have covered $500\text{m}$ with a finishing speed of $10\text{ km h}^{-1}$.

You may also like

Cannon Balls

How high will a ball taking a million seconds to fall travel?

Dangerous Driver?

Was it possible that this dangerous driving penalty was issued in error?

Board and Spool

Think about this mechanical configuation and compute the time taken for the man to reach the spool

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo