Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cyclic Quad Jigsaw

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Why do this problem?

First, the surprising amount of variation in possibilities shown in the video is worth the journey. Secondly, even though there is such variation the outer quadrilateral is always cyclic.Finally, specialising by trying numbers can help form a map of the journey you need to make in order to prove the generalisation for any cyclic quadrilaterals.

Possible approach

The first stage is simply to investigate:
Construct an image with the given constraints either using dynamic geometry or with a ruler and compasses. Using ruler and compasses is difficult simply because you need some flexibility to ensure a reasonable overlap of the circles.

Are learners surprised by the flexibility visible in the dynamic image?
Allow time for lots of discussion about construction techniques, the order of working (formed by the constraints) and the freedoms available (how many circles will meet the cirteria?).

Now for the problem.
A first step is to encourage exploration by writing in some angle sizes (following a discussion of the properties of opposite angles of a cyclic quadrilateral). Does the outside quadrilateral have opposite angles whose sum is 180 degrees and is therefore cyclic?

In specialising by using numbers for angles and keeping track of which angles can be calculated from others, the steps to a generalisation are much clearer.

Key questions

  • What defines a cyclic quadrilateral?
  • What are the freedoms?
  • What the contraints?

 

Possible support

Focus on the construction and looking at specific examples.
For work on cyclic quadrilaterals try Pegboard Quads.


Related Collections

  • Other videos

You may also like

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

Lawnmower

A kite shaped lawn consists of an equilateral triangle ABC of side 130 feet and an isosceles triangle BCD in which BD and CD are of length 169 feet. A gardener has a motor mower which cuts strips of grass exactly one foot wide and wishes to cut the entire lawn in parallel strips. What is the minimum number of strips the gardener must mow?

Long Short

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo