Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cut it Out

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


The diagram shows an equilateral triangle dissected into 4 smaller equilateral triangles. Which numbers of smaller triangles are possible and which are not, and why? This remains a Tough Nut as nobody has yet explained why it is impossible to dissect an equilateral triangle into certain numbers of smaller equilateral triangles.

Robert and Andrew, St James Middle School, Bury St Edmund's sent this solution with six equilateral triangles. They say they think this is the only solution with 6 smaller triangles other than rotating the shape.


Talei and Stephanie of Poltair Community School and Sports College, St Austell, Cornwall said they think that dissection into 2 or 3 smaller triangles is impossible and that 4 is the smallest number of triangles possible. They gave this as an example of dissection into 15 smaller triangles.


Talei's also had the idea of allowing overlapping triangles and realised that this would make it possible to have any number of smaller triangles, even infinitely many, but that would be a different question.

Lucas from St. Joseph's in Reading wrote in this wonderful explanation.

It is possible to make any number of smaller triangles except 2, 3 and 5 in the large equilateral triangle. Any even number can be made by drawing an odd number of small triangles in a row along the bottom going up, down, up, therefore creating a larger triangle on the top. For odd numbers ( This works for even numbers above 9), simply subtract 3 from that number - for 7 we would get 4 - Have you made this triangle yet? If not, subtract 3 again and so on. In the number 4 triangle (Or whichever you are using), find a smaller triangle, pointing up or down, and inside of it draw a triangle pointing in the opposite direction with the corners touching the sides. Count up the triangles and you should find that there are the number you are looking for. This is because a triangle has 3 sides, so as well as the triangle in the middle, it creates 3 around the edge.




You may also like

Counting Counters

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Cuisenaire Squares

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Doplication

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo