Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Button-up

Age 5 to 7
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

You found several different ways to help find the solution to this problem. 

Lydia and Megan from Moorfield drew pictures of the buttons and numbered each button according to the order it was done up.  They found six ways:


 
 

Some of you described the buttons as 'top', 'middle' and 'bottom' then made a list of all the possible ways of doing them up.  For example, Abbie from Oakthorpe Primary said:

 

If we start with the top button:
top middle bottom
top bottom middle

If we start with the middle button:
middle bottom top
middle top bottom

If we start with the bottom button:
bottom top middle
bottom middle top  

Then there were those of you who labelled your buttons as $1$, $2$ and $3$, like Yousef at Levendale Primary who wrote:

 
$132, 123, 213, 231, 312, 321 = 6$ times


Karnan from Stag Lane Junior School explained how he knew he had all the possibilities:

These are all the combinations for the buttons. You can be sure because all you have to do is:
1. See how many combinations there are for buttoning the top button on first.
2. Then, you have to multiply by three for three possible starting positions.

Well done all of you.  Kurtis from Moorfield School and  Demi from Tudhoe Grange rightly pointed out that we were presuming we wanted to do up all three buttons.   Kurtis asks:

Perhaps you could find out how many ways there are if you were allowed to do up $1$, $2$ or $3$ buttons?   
 

What a great question, Kurtis!  


You may also like

Plants

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Triangle Animals

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Junior Frogs

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo