Or search by topic
This problem utilises congruent triangles to provide a simple proof. There are opportunities for discussion of "why it works" and for drawing upon the historical context of angle trisection as well as considering extending the idea to obtuse angles. You might wish to use this problem after you have completed some work on congruence tests (see notes below).
Making a carpenter's square and testing this out is a good first step.
Discussion of what mathematical tools learners might be able to make use of can lead to ideas such as:
Revisit congruence tests. See the notes below.
Use the images in this document to place the stages of the "construction" in order.
Can you extend this idea in some way to trisect an obtuse angle? Use tracing paper to draw one of the congruent triangles and 'lay it over' other sections of the diagram to help identify the three congruent triangles.
Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?
I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?
Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?