Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Big and Small Numbers in the Living World

Age 11 to 16
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem ?

Practice with the use of numbers is a crucial biological skill. These interesting questions will allow you to practice these skills whilst developing awareness of orders of magnitude in scientific contexts.

Possible approach

There are several parts to this question. The individual pieces could be used as starters or filler activities for students who finish classwork early. Enthusiastic students might work through them in their own time. Since there is no absolutely 'correct' answer to many of these questions, they might productively be used for discussion: students create their own answers and then explain them to the rest of the class. Does the class agree? Disagree? Is there an obvious best 'collective' answer?

Key questions

  • What assumptions will you need to make in this question?
  • How accurate do you think you answer is?
  • What order of magnitude checks could you make to test that your answer is sensible?

Possible extension

Can students make up similar questions? Can they put any upper or lower bounds on the numbers?

Possible support

Students might struggle with the 'open' nature of the questions. To begin, they might like to read the Student Guide to Getting Started with rich tasks


You may also like

Elastic Maths

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Logic, Truth Tables and Switching Circuits Challenge

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record your findings.

Truth Tables and Electronic Circuits

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo