Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Clickety Click

Age 16 to 18
ShortChallenge Level Yellow star
  • Problem
  • Getting Started
  • Solutions

What is the sum of: $$6 + 66 + 666 + 6666 + \cdots + 666666666\cdots6$$ where there are $n$ sixes in the last term?


 
Did you know ... ?
Many functions, including the trigonometric and exponential functions that you meet in school, can be approximated by infinite power series and good approximations can be found using a finite number of terms. If the series is centred at zero then it can be written in the form $\Sigma_{n=0}^\infty a_nx^n$ where the coefficients depend on the derivative of the function at the origin. The infinite geometric series $1 + x + x^2 + \cdots $ which converges for $|x| < 1$ is the power series for the function $(1 - x )^{-1}$.

You may also like

A Close Match

Can you massage the parameters of these curves to make them match as closely as possible?

Prime Counter

A short challenge concerning prime numbers.

The Right Volume

Can you rotate a curve to make a volume of 1?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo