Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Beelines

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Beelines printable worksheet


Take a look at the video below:

If you can't see the video, click below for a description.


If I choose the point (5, 5) and draw a line segment joining the point to the origin, my line passes through 5 grid squares.
If I choose the point (4, 3) and draw a line segment joining the point to the origin, my line passes through 6 grid squares.
If I choose the point (6, 4) and draw a line segment joining the point to the origin, my line passes through 8 grid squares.

Draw some line segments of your own, and record how many grid squares each one passes through. 

You may wish to explore this using the GeoGebra applet below.



 

Can you find a relationship between the coordinates of the end of the line segment and the number of squares it passes through?

If I draw the line segment joining the origin to the point (50, 37) how many grid squares will it pass through?

If I draw the line segment joining the origin to the point (96, 72) how many grid squares will it pass through?

Can you find a line segment that passes through exactly 24 squares?
Can you find more than one?

Can you work out how many grid squares a line segment passes through, if you are given the coordinates of the two endpoints, where neither is at the origin?

You could also investigate the number of grid lines crossed...

 

Notes and Background

Working out which grid squares a straight line crosses allows you to create algorithms for drawing straight lines on a computer, where each pixel is a grid square. Read more about line drawing algorithms here.

 

 

 

Related Collections

  • Other videos

You may also like

Polycircles

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Nim

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Loopy

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo