Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Helicopters

Age 7 to 16
Challenge Level Yellow star
  • Project
  • Getting Started
  • Teachers' Resources


Why work on this activity?

This activity offers an opportunity to combine skills from mathematics, science and technology. Students are required to consider different options, experiment with variables, keep records of results, make predictions, analyse and present data, develop convincing arguments, work collaboratively, and work within constraints.
 

Possible approach  

Using this template, give everyone in the class the chance to make a helicopter and try it out. You may wish to show the video first.
 
Next, introduce the challenge to design the "best" helicopter. You might like to set the parameters for "best" yourself, or to have a class discussion on suitable criteria for judging helicopters. This should include a decision on the height from which the helicopter will be dropped, as well as the load it will carry.
 
Arrange students in small groups, and make it clear that at the end of the time available they will need to present to the rest of the class their helicopter with supporting evidence of its merits.
   
To round off the activity, allow plenty of time for each group to present their design and encourage the rest of the class to give positive feedback and also to comment on how (un)convinced they are by the evidence presented in the "sales pitch".

Equipment:

  • helicopter template  (perhaps printed on thin card)
  • paper and card of different thicknesses
  • paper clips  
  • scissors  
  • ruler  
  • sharp pencil

Key questions

What's the maximum number of paper clips you can add while still having a safe descent and landing? 
Does the helicopter always land in the same place?
Can you make it fly to particular places?
Does it always rotate in the same direction? 

Possible extension

This activity could be extended in a couple of ways: firstly by introducing more demanding success criteria for the helicopter, or secondly by expecting a more rigorous analysis of the results from the tests done with different helicopters.

Possible support

Remind students to keep everything constant except that which they are testing, and to perform each experiment more than once and take average results.         

Guidance could be offered on the sorts of changes to make, for example, keeping the helicopter in the same proportions, but gradually increasing its overall size, or keeping the width of the wings and the body constant, and gradually increasing the length of the wings and body.

Related Collections

  • Other videos
  • STEM clubs

You may also like

First Forward Into Logo 1: Square Five

A Short introduction to using Logo. This is the first in a twelve part series.

First Forward Into Logo 10: Count up - Count Down

What happens when a procedure calls itself?

The Moving Planets

Mathematics has always been a powerful tool for studying, measuring and calculating the movements of the planets, and this article gives several examples.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo