Or search by topic
Where Can We Visit? printable sheet
100 squares printable sheet
Here is a 100 square board with a counter on 42:
Using either of the two operations $\times 2$ and $-5$, whereabouts on the 100 square is it possible to visit?
You might start like this: $$42, 37, 32, 27, 22, 17, 12, 7, 14, 9, 18, 13, 26, 52, 47, 42, 84 ...$$Notice that you are allowed to visit numbers more than once.
Is it possible to visit every number on the grid?
What if you start on a different number?
Can you explain your results?
Choose pairs of operations of your own and investigate what numbers can be visited.
You might like to print off some 100 squares.
Is there a way to predict which numbers it's possible to visit, for a given starting point and a pair of multiplication/subtraction operations?
This problem is also available in French: Où Irons-nous?
I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?
I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?
Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?