Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Chocolate Cake

Age 11 to 14
Challenge Level Yellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem gives practice in working with volume in a context which anyone who bakes will recognise - when your recipe specifies a piece of equipment you don't have.  Rather than just going out and buying another tin, you therefore want to see if what you have will do.

The depth of the 23cm round tin is deliberately omitted, since depth is rarely specified in a recipe in fact.  Students will need to consider what depth such a tin might realistically have, and then see if they think the volume of cake mix will fit in it.

Key questions

What is a realistic depth for the 23cm round tin?

What is the least depth the 23cm round tin could have, and still be suitable to bake the cake?

Possible extension

Once students have explored the question asked, they could then consider whether a round tin or a square one takes a bigger volume of cake mix for a given diameter.  What's the equivalent of diameter in a square tin, is it the side length or the diagonal?

Possible support

Making Boxes, which is a Stage 2 problem, would be a good warm-up problem.

You may also like

Boxed In

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

Plutarch's Boxes

According to Plutarch, the Greeks found all the rectangles with integer sides, whose areas are equal to their perimeters. Can you find them? What rectangular boxes, with integer sides, have their surface areas equal to their volumes?

The Genie in the Jar

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal spoons. Each day a spoonful was used to perfume the bath of a beautiful princess. For how many days did the whole jar last? The genie's master replied: Five hundred and ninety five days. What three numbers do the genie's words granid, ozvik and vaswik stand for?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo