Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Stand up Arcs

Age 16 to 18
ShortChallenge Level Yellow star
  • Problem
  • Solutions

 
onion4
Imagine the circle filled with infinitely many concentric rings. 
 
Now focus on the first quadrant. Imagine straightening all the quarter circles into vertical strips. Why do all the tops of the strips lie on the line $y = \frac{1}{2}\pi x$?  Remember there are infinitely many strips so  they fill a triangular area as shown in the diagram.
 
Why is it that the arcs are not stretched in this process, only straightened, so that the area of each strip stays the same when you straighten each arc into a straight line?
 
What does this tell you about the area of the circle?
 
The 'strings' could be longer. Suppose instead of straightening quarter circles you straightened arcs which were whole circles. Then on what line would the tops of the straight 'stand up arcs' lie? Again the area of the triangle packed with strips made of straightened arcs of circles is equal to the area of the circle and this gives the formula for the area of the circle. 
 
Did you know ... ?
Radians are a more natural measure for angles than degrees. One radian is the angle subtended at the centre of a circle by an arc that is equal in length to the radius of the circle. The length $s$ of an arc is proportional to the radius $r$ and also to the angle $\theta$ that the arc subtends at the centre of the circle, that is $s = r\theta$.  It follows that the magnitude in radians of one complete revolution (360 degrees) is the length of the entire circumference divided by the radius, or $\frac{2\pi r }{r}$ or $2\pi$. Thus $2\pi$ radians is equal to 360 degrees, meaning that one radian is equal to $\frac{180}{\pi}$ degrees.

You may also like

A Close Match

Can you massage the parameters of these curves to make them match as closely as possible?

Prime Counter

A short challenge concerning prime numbers.

The Right Volume

Can you rotate a curve to make a volume of 1?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo