Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Fifteen Cards

Age 7 to 11
Challenge Level Yellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Thank you to everybody who sent in their solutions to this problem. We received a lot of correct solutions and lots of children said that they had worked systematically to make sure that they found all the solutions - well done to all of you! Only a few children explained how they did this, so we've focused on those solutions here.

Beth from Halstead Preparatory School in England said:

My solutions were:
8, 7, 13, 10, 6, 12, 9
6, 9, 11, 12, 4, 14, 7

The way I did this was I added all the numbers to 15, 20, 23, 16, 18, and 21 and then I tried all the solutions until I found them all.

This is a really clear table, Beth - I'm convinced that you've looked at all of the possibilities here. I wonder how Beth used this table to find the different solutions?

Aanya, also from Halstead, showed us how they began to answer the question:

I worked out this problem by using trial and error in a systematic way.
This is how I did it.

1+14=15. 14+6=20. 6+17=23. You can’t use 17.
14+1=15. 1+19=20. You can’t use 19.
2+13=15. 13+7=20. 7+16=23. You can’t use 16.
13+2=15. 2+18=20. You can’t use 18.

Good start, Aanya! What would Aanya have done next using this method?

We were sent a few solutions that showed us the systematic working to check every possible combination of cards. Anahita from Woodford Green Preparatory School in the UK sent us this picture:

Maymanah from Herringthorpe Junior School sent in a very similar description and explanation:

1, 14, 6, 17 X
2, 13, 7, 16 X
3, 12, 8, 15, 1, 17 X
4, 11, 9, 14, 2, 16 X
5, 10, 10 X
6, 9, 11, 12, 4, 14, 7 Correct!
7, 8, 12, 11, 5, 13, 8 X
8, 7, 13, 10, 6, 12, 9 Correct!
9, 6, 14, 9 X
10, 5, 15, 8, 8 X
11, 4, 16 X
12, 3, 17 X
13, 2, 18 X
14, 1, 19 X
15, 0 X

First, I started with 1 as the first card, but I realised that I couldn't start with 1 or 2 as some cards required a number more than 15 so I continued with 3 and onwards. I realised that it couldn't be 5 as the first card because that needed repeat number 10 cards. Then I got up to 6 and it worked all the way through. Then I carried on from 7 to see if I could find any more solutions. Then I came across 8 and found another answer! After that I carried on looking for any other answers. When I got to 11, I realised that there were no more answers as some cards need more than 15. That is how I worked out the question.

Thank you both for sharing your working with us! I wonder if there are any patterns you can spot in the full solutions, looking at the possibilities that don't work as well as the ones that do. Why do these patterns happen?

We were also sent in some other solutions that explained how they worked systematically to find the answers. Well done to: all the children in Cherry Class at Bramfield Primary School in England; Viren KS; Dhruv from The Glasgow Academy in the UK; Mia, Jolene, May and Joanna from Falcons School for Girls; and Hiren, Vansh, Eshaan, Rishaan, Samaira, Renah, Udit, Uday, Viha, Gowri, Arya, Vishnu, Krishna, Rivaan, Miraya from Ganit Kreeda in India.

Ci Hui Minh Ngoc from Kelvin Grove State College in Brisbane, Australia used algebra to find all the possible solutions:

Well done, Ci Hui Minh Ngoc! This is a similar idea to the one Maymanah described, where you can narrow down the possibilities for the first card before working out all the possible solutions.

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Roll These Dice

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

Domino Square

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo