Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Graphs of Changing Areas

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
We received some excellent solutions to this problem that considered the relationship between the rectangles and the graph. Amrit and Guruvignesh, both from Hymers College, and Sergio from Kings College Alicante correctly identified that the rectangles all share an area of 10 units. Here's what Guruvignesh said:

The graph shows the relationship between $x$ and $y$ when the area is $10$ square units. Because $y=\frac{10}x, xy=10$. Therefore, the rectangles all have the same area. 

The graph has reflectional symmetry in the line $y=x$. 
As $x$ becomes very large, the graph will elongate and the $y$ coordinate will near the $x$ axis but will not touch the axis, because the length of a side can never be equal to $0$. This is because as one side increases the other side decreases to maintain a constant area, so in this case an area of $10$ square units.  

The graph will never intersect with the graphs $y=\frac{20}x$ and $y=\frac5x$ because the areas of the rectangles have halved or doubled.

Pablo from Kings College Alicante said a little more about the asymptotic behaviour of the graph:

As $x$ gets larger, $y$ tends to $0$
if $x = 10, y = 1$
if $x = 100, y = 0.1$
if $x = 1000, y = 0.01$
etc.

Agathiyan, also from Hymers College, explained why the line $y=\frac{1}{2} P-x$ does not always intersect with the curve $y=\frac{10}x$:

The graph would not intersect for all values of $P$ since the line has a gradient of -1, thus it slopes downwards, and since there is space underneath the curve in the positive $x$ and $y$ quadrant, there are values of the $y$ intercept ($\frac{P}{2}$) which are positive and also allow the line to pass underneath the curve, thus not all values of $P$ intersect. One example of a value that doesn't intersect is if $P=5$.

Pablo showed that a square has the minimum perimeter:

$P = 2x + 2y$
$P = 2x + \frac{20}x$
$P = \frac{2x^2 + 20}{x}$

Differentiating using the quotient rule,
$P' = \frac{(x)(4x) - (2x^2+20)(1)}{x^2}$
$P' = \frac{2x^2-20}{x^2}$

Stationary point when P' = 0
$0 =\frac{2x^2-20}{x^2}$ 
$0 = 2x^2 - 20$
$20 = 2x^2$
$x^2 = 10$
$x = \sqrt{10}$

$y = \frac{10}{\sqrt{10}} = \sqrt{10}$

In other words, a square has the minimum perimeter of $4\sqrt{10}$. There is no maximum
perimeter because you can make rectangles with sides ${1 000 000, 0.000001}$
which would give a perimeter of over $2 000 000$.


Tim from Gosforth Academy sent us a very clear solution, which you can read as a pdf: Tim's solution.

You may also like

Real(ly) Numbers

If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?

Overturning Fracsum

Can you solve the system of equations to find the values of x, y and z?

Pair Squares

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo