Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Falling Beads

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

First of all let's choose a convenient Cartesian coordinate system as shown in the picture and suppose that the bead which is sliding through the needle inclined at an angle $\alpha$ to x-axis is at distance $r(t)$ from the origin.

The gravity force is acting on the bead and it makes the bead accelerate along the needle.  Write II-Newton's law in the direction along the needle and in the direction perpendicular to the needle.

$$ma = mg\sin(\alpha)$$

$0 = N - mg\cos(\alpha)$ where $N$ is a reaction force.

Beads start from rest, so $r(t) = \frac{at^2}{2} = \frac{g\sin(\alpha) t^2}{2}$.

Change the polar coordinates to Cartesian coordinates by substituting $r = \sqrt{x^2 + y^2}$ and $\sin(\alpha) = \frac{y}{\sqrt{x^2 + y^2}}$.

$$\sqrt{x^2 + y^2} = \frac{y}{\sqrt{x^2 + y^2}}\frac{gt^2}{2}$$ Multiply both sides by $\sqrt{x^2 + y^2}$ and complete the square.

$$x^2 + \left(y -\frac{gt^2}{4}\right)^2 = \left(\frac{gt^2}{4}\right)^2$$

  • The shaped formed by beads after time $t$ is a circle of radius $\frac{gt^2}{4}$ with centre coordinates $\left(0, \frac{gt^2}{4}\right)$.
  • From the previous answer we deduce that there is a circle whose centre is falling with the acceleration $\frac{g}{2}$ and this circle is expanding with the same acceleration. A picture shows the shape of beads after time $0.5\textrm{ s}$, $0.75\textrm{ s}$, $1\textrm{ s}$, $1.25\textrm{ s}$, $1.5\textrm{ s}$, $1.75\textrm{ s}$, $2\textrm{ s}$.
    Extension: Now we have a friction force due to sliding. We modify our previous equations:

$$ma = mg\sin(\alpha) -\mu N$$

$0 = N - mg\cos(\alpha)$ where $N$ is a reaction force.

$$\therefore\qquad a = g(\sin(\alpha) - \mu\cos(\alpha))$$ It is important to notice that if $a < 0$ then the bead is not even starting to slide. Thus, the beads will slide for $\alpha$ from $\tan^{-1}(\mu)$ to $(\pi - \tan^{-1}(\mu))$. To simplify the situation, notice that the shape will be symmetrical in the y-axis. Thus, we need to analyse what happens for $\alpha$ from $\tan^{-1}(\mu)$ to $\frac{\pi}{2}$. $$r(t) = \frac{at^2}{2} = (\sin(\alpha) - \mu \cos(\alpha)) \frac{gt^2}{2}$$ Change to the Cartesian coordinate system $x^2 + y^2 = \frac{gt^2}{2} (y - \mu x)$ for $\frac{\pi}{2} > \tan^{-1} (\frac{y}{x}) > \tan^{-1} (\mu)$. Complete the squares to get

$$\left(x+\frac{\mu gt^2}{4}\right)^2+\left(y-\frac{gt^2}{4}\right)^2=\left(1+\mu^2\right)\left(\frac{gt^2}{4}\right)^2\;.$$ It is easier to plot a whole circle and then to take a suitable arc. Similarly, to reflect a circle in y-axis change $x$ to $-x$ then we have an equation $$\left(-x+\frac{\mu gt^2}{4}\right)^2 + \left(y - \frac{gt^2}{4}\right)^2 = \left(1+ \mu^2\right)\left(\frac{gt^2}{4}\right)^2$$ and we take a suitable arc again. Let's take $\mu = \frac{\sqrt3}{3}$ then $\tan^{-1}\left(\frac{\sqrt3}{3}\right) = \frac{\pi}{6}$. We plot circles which help to show how the shape of beads in red changes. These graphs represent the shape of beads after time $0.5\textrm{ s}$, $0.75\textrm{ s}$, $1\textrm{ s}$, $1.25\textrm{ s}$, $1.5\textrm{ s}$, $1.75\textrm{ s}$, $2\textrm{ s}$. Circles are traveling along green lines which equations can be found knowing that the coordinates of center is $\left(\frac{\mu gt^2}{4}, \frac{gt^2}{4}\right) = \frac{gt^2}{4}\left(\mu, 1\right)$ and  $\frac{gt^2}{4}\left(-\mu, 1\right)\;.$


To sum up:

  • The shape of beads after time $t$ is an union of two arcs.
  • Centre of circles are traveling with $\frac{g}{2} \sqrt{1+\mu^2}$ acceleration and expanding with the same acceleration.

You may also like

The Not-so-simple Pendulum 2

Things are roughened up and friction is now added to the approximate simple pendulum

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo