Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Bike

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

As suggested in the hint it is useful to choose the coordinate system with the origin at the wheel touching the ground point. The wheel is moving horizontally with the speed $v = 18\mathrm{kmh}^{-1} = 5\mathrm{ms}^{-1}$ and the diameter of the wheel $d = 23 \mathrm{inch} = 0.584\mathrm{m}$. Note $r = d/2$. The wheel is not slipping on the ground, thus the linear speed of the drops on the wheel is $v = 5\mathrm{ms}^{-1}$. Suppose that the drop detaches when it is at an angle $\alpha$ with vertical.

In x direction:  $x(t) = -r\sin(\alpha) + vt + vt\cos(\alpha)\;.$

In y direction:  $y(t) = r + r\cos(\alpha) + vt\sin(\alpha) - \frac{gt^2}{2}\;.$

We neglect any air resistance then the drop will be at its highest point when its vertical speed is zero. 

$$0 = v\sin(\alpha) - gt_{max}$$

Hence, $t_{max} = \frac{v\sin(\alpha)}{g}$. We substitute this expression to the y direction equation to get that

$$y(\alpha) = r(1 + \cos(\alpha))+\frac{v^2\sin(\alpha)^2}{g}-\frac{v^2\sin^2(\alpha)}{2g} = r(1 + \cos(\alpha)) +\frac{v^2\sin^2(\alpha)}{2g}\;.$$

 

Method 1. Differentiate y with respect to alpha and then solve $\frac{dy}{d\alpha} = 0$. Remember that $\frac{d\sin(\alpha)}{d\alpha} = \cos(\alpha)$ and  $\frac{d\cos(\alpha)}{d\alpha} = -\sin(\alpha)$. We can use chain rule to differentiate $\sin^2(\alpha)$: $$\frac{d\sin^2(\alpha)}{d\alpha} = \frac{d\sin^2(\alpha)}{d\sin(\alpha)}\frac{d\sin(\alpha)}{d\alpha} = 2\sin(\alpha)\cos(\alpha)\;.$$ Moreover if C is constant $\frac{dC}{d\alpha} = 0$. Thus, $\frac{dy}{d\alpha} = 0 - r\sin(\alpha) + \frac{v^2}{2g}2\sin(\alpha)\cos(\alpha)$. This means that either $\sin(\alpha) = 0$ or $\cos(\alpha) =\frac{gr}{v^2}$ for $\frac{gr}{v^2} < 1$. If $\sin(\alpha) = 0$ then $\cos(\alpha) = 1$ or $-1$, $y_{max} = 2r = 0.584\mathrm{m}$ or $0$. If $\cos(\alpha) =\frac{gr}{v^2}$ for $\frac{gr}{v^2} < 1$ then $y_{max} = r\left(1+\frac{gr}{v^2}\right) + \frac{v^2}{2g}\left(1 -\frac{g^2r^2}{v^4}\right) = r + \frac{v^2}{2g} + \frac{gr^2}{2v^2} = 1.58\mathrm{m}$. So, the maximum height is $1.58\mathrm{m}$.

 

Method 2. Use identity $\sin^2(\alpha) = 1 - \cos^2(\alpha)$ and note $X = \cos(\alpha)$. Then $y(X) = r + rX + \frac{v^2}{2g} - \frac{v^2}{2g}X^2$ which is a quadratic and the critical point can be found. Try it!

 

Find the $x$ coordinate of the drops when they are at the highest point.

$$\begin{eqnarray} x_{max} &=& -r\sin(\alpha) + vt(1 + \cos(\alpha)) = -r\sin(\alpha) + v\frac{v\sin(\alpha)}{g}(1 + \cos(\alpha))\\  &=& \sin(\alpha)\left(\frac{v^2}{g}(1 + \cos(\alpha)) - r\right)\\
&=& \sqrt{1 - \frac{g^2r^2}{v^4}}\left(\frac{v^2}{g}\left(1 + \frac{gr}{v^2}\right) -r\right) =\frac{v^2}{g} \sqrt{1 - \frac{g^2r^2}{v^4}}
\end{eqnarray}$$
 

The coordinate of the wheel axle is $x_{axle} = vt = v\frac{v\sin(\alpha)}{g} = \frac{v^2}{g} \sqrt{1 - \frac{g^2r^2}{v^4}}$. Thus, $x_{axle} = x_{max}$. The drops are just above the wheel axle.

 

You may also like

High Jumping

How high can a high jumper jump? How can a high jumper jump higher without jumping higher? Read on...

Crazy Cannons

Two cannons are fired at one another and the cannonballs collide... what can you deduce?

Max Throw

At what angle should you throw something to maximise the distance it travels?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo