Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Ice Cream

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Let's all go down to the favourite cafe that sells ice cream which you choose from different tubs.

Suppose that there's Apricot, Banana and Citrus.

There is just one rule about what you can choose, and here it is:

YOU CANNOT CHOOSE A SELECTION OF ICE CREAM FLAVOURS THAT INCLUDES TOTALLY WHAT SOMEONE HAS ALREADY CHOSEN!

This means that if someone has chosen Banana and Citrus I cannot then go and choose all three but I could choose to have Apricot on its own.

So perhaps something like this happens:-

Sarah, thinking of apricot and citrus!

Sarah, the first child, chooses Apricot and Citrus.

Tim, the second child chooses Banana and Citrus [this obeys the rule because Sarah's choice was not Banana on its own nor was it Citrus on its own].

Raj, the third child, chooses Citrus.

Zoe, the fourth child, chooses Banana.

Matt, has to be the last child because he can only choose Apricot and then there are no other choices left.

In this example, with these children making these choices, only five children can have ice cream [using our rule].

But suppose more children wanted ice cream and so they got together to work out how this could be done.

They might come up with an idea like this:-

[I'm using the short-hand this time of A B C where A is Apricot, B is Banana and C is Citrus.]

1st. choice > A B C
2nd. choice > A B
3rd. choice > A C
4th. choice > B C
5th. choice > A
6th. choice > B
7th. choice > C

So seven children altogether. I think that the children can have different sized scoops so that even if they only have one flavour they have as much ice cream as someone choosing three flavours!

If these children weren't very good at working things out they could come up with the worst way; that would be like this:-

1st. choice > A
2nd. choice > B
3rd. choice > C

AND THAT'S ALL!

Well that's what it's like when there are three flavours. At the most, seven children can go in that order and get those choices of ice cream. At worst, only three children can go and get ice cream.

Mind you I think that there are other ways of getting seven.

Have a go and find all the different ways of having seven children getting ice cream. Remember that when someone goes up and makes their choice they have to obey that rule:

YOU CANNOT CHOOSE A SELECTION OF ICE CREAM FLAVOURS THAT INCLUDES TOTALLY WHAT SOMEONE HAS ALREADY CHOSEN!

And FINALLY ...

I wonder what would happen if ...?

Please send in any results that you get along the way. I have to go - my mouth is watering for some ice cream!


You may also like

Polydron

This activity investigates how you might make squares and pentominoes from Polydron.

Multilink Cubes

If you had 36 cubes, what different cuboids could you make?

Cereal Packets

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo