Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tiling Into Slanted Rectangles

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Teachers' Resources

Tiling into Slanted Rectangles

 This is seen as a possible follow-on from Tiles in the Garden.

This activity takes "Tiles in the Garden", much further. We can keep the main ideas the same - 

  • Square tiles
  • A corner of a tile at each corner of the rectangle
  • The ability to slice a tile into parts so as to use each part

So this one used $26$ and the slope was generated by going along 1 and up to 5.

 

This time let's put on a limit of using less than 100 tiles.

What sizes of rectangles could be filled obeying the three rules?

How many tiles for each rectangle you find?

Are there any numbers of tiles between 10 and 100 for which there cannot be a rectangle?

 

 

Why do this problem?

 

This activity acts as a further extension to Tiles in the Garden. It's an activity that is intended to give opportunities for those pupils to explore more deeply using their intuition and flair in the areas of both spatial awareness and number relationships. Many pupils may find this whole idea sparks off their curiosity and through persevering will come up with some great new ideas. If you want to pursue curiosity more see the Teacher Support below.

 

Possible approach

 

As this is designed for the highest attaining, it might be presented as on the website or in a one-to-one situation, encouraging discussion between adult and pupil. The pupils may need access to a spreadsheet once many number results are being acquired.

 

Key questions

 

Tell me about what you have found?
Can you describe the ways that you arrived at these numbers?
How did you construct this on the spreadsheet you used?
 

Possible Extension

It would be good to handing over to the pupil and encouraging the curiosity question "I wonder what would happen if . . . ?"


Teacher Support


This task was created to help in the pursuance of curiosity within the Mathematics lessons.
Help may be found in the realm of curiosity in watching parts of these excellent videos.
Firstly "The Rise & Fall of Curiosity", particularly the extract [23.50 - 37.15] on "adult encouragement answering and teacher behaviour."
Secondly, "The Hungry Mind: The Origins of Curiosity", particularly the extract [8.22 - 12.29]  on "Children asking questions"


   

First can also be found at - https://www.youtube.com/watch?v=X-0NOrIU67w
Second can also be found at https://www.youtube.com/watch?v=Wh4WAdw-oq8

You may also like

Geoboards

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Tiles on a Patio

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Pebbles

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo