Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Gnomon Dimensions

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

You may wish to try the related problem Building Gnomons first.

A Gnomon is a rectangle with another rectangle cut out of one corner. The area of each Gnomon is a Fibonacci number. (The Fibonacci numbers are $1, 1, 2, 3, 5, 8$ and so on, with each new term being the sum of the previous two terms.)

$G_1$ has area $3$, $G_2$ has area $5$, $G_3$ has area $8$ and so on.

Draw the next three gnomons in the sequence.

Look at the length and width of the large rectangle from which each gnomon is made.
Large gnomon
Is there a pattern to the lengths and widths?
Can you generalise?

Now look at the length and width of the rectangle cut out of each gnomon. Can you see any patterns here? Can you generalise and justify what you see?

I want to group the gnomons with area 3, 8 and 21 together, and the gnomons with area 5, 13 and 34 together. Can you explain why I want to divide these into two separate groups?

Can you give a convincing argument why all the gnomons fit into one of these two groups?


What other interesting patterns and relationships can you find?

You may also like

Bike Shop

If I walk to the bike shop, but then cycle back, what is my average speed?

Searching for Mean(ing)

If you have a large supply of 3kg and 8kg weights, how many of each would you need for the average (mean) of the weights to be 6kg?

Building Gnomons

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo