Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Hex

Age 11 to 14
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

Malcolm Findlay from Madras College in St Andrews, Scotland has solved the first part of this problem:

Izumi Tomioka, Carol Chow and Priscilla Luk from The Mount School in York solved the second part of the problem:

The original hexagon has sides of length 3 units and we need to work out $x$, the lengths of the sides of the smaller hexagons.

The hexagon below has been made from 6 of the shaded triangles above.
We need to find the length of one of the sides of this hexagon.

Splitting the shaded triangle into half gives us a right angled triangle such that: $$\cos30 = {1.5\over H}$$ $$H = {1.5\over \cos 30}$$ $$H = 1.73$$

Andrei Lazanu (aged 12) from School 205 in Bucharest, Romania, solved both parts of the problem.

This is how he tackled the second part:

To calculate the lengths of the sides of the smaller hexagons I used the following notations:

l for the length of side of the great hexagon
a for the length of side of the small hexagon

I used the following notation:

Triangle ACE is equilateral, because its sides are congruent.
So, angle EAC is $60$ °.

Angle FAB is $120$ °, since each angle of a regular hexagon is $120$ °.

Triangle AEF is congruent with triangle ACB, having all sides congruent. They are also isosceles triangles.
This means that each of the angles FAE and CAB is $30$ °.

Therefore angle EAB is $90$ °.

Triangle AMN is also equilateral, because it has a $60$ ° angle (MAN) and AM = AN.
Triangle ANB is isosceles, so AN and NB are congruent.

Therefore, in the right angled triangle MAB,
MA = MN = NB = $a$

AB has length $l$

Applying the Pythagorean Theorem: $$l^2 = (a + a)^2 - a^2$$ $$l^2 = 4a^2 - a^2$$ $$l^2 = 3a^2$$ $$l = a \sqrt{3}$$

If the length of the side of the great hexagon is 3 units long $l = 3$

Therefore $a = \sqrt{3}$ units

An alternative way of calculating "a" takes into account the first part of the problem:
the area of the great hexagon is three times the area of the small one.

For a hexagon of side $l$, the area is calculated as 6 times the area of an equilateral triangle of side $l$,
this means that the area of the great hexagon is:

$6{l^2 \sqrt3\over 4} = {l^2 3\sqrt3\over2}$ $ (1)$

The 3 smaller hexagons of side "a" have a total area of:

$3{a^2 3\sqrt3\over 2} = {a^2 9\sqrt3\over2}$ $(2)$

Since, $(1)$ and $(2)$ represent the same area, $3a^2 = l$

which is the same as we found above.


You may also like

How Big?

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

Triangular Tantaliser

Draw all the possible distinct triangles on a 4 x 4 dotty grid. Convince me that you have all possible triangles.

Guillotine

Weekly Problem 9 - 2006
What fraction of the area of the rectangle is shaded?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo