Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Curvy Areas Poster

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Student Solutions

 

3 pieces: each piece is $\frac13$ of the total area

4 pieces: each piece is $\frac14$ of the total area

5 pieces: each piece is $\frac15$ of the total area

$m$ pieces: each piece is $\frac1m$ of the total area

 

Why?

Red, orange and yellow

The top half is made of 3 semicircles on top of each other:

Say the smallest semicircle has radius 1, the medium semicircle has radius 2 and the largest has radius 3

Smallest semicircle has area $\frac12\pi\times1^2 = \frac{\pi}2$

Medium semicircle has area $\frac12\pi\times2^2 = 2\pi$

Largest semicircle has area $\frac12\pi\times3^2 = \frac{9\pi}2$

Whole circle has area $9\pi$

Red area: smallest + (largest $-$ medium) $=\frac{\pi}2 + \frac{9\pi}2 - 2\pi = 3\pi$ which is $\frac13$ of $9\pi$

Yellow area is equal to red area so the orange area must also be $\frac13$ of the total.

 

Red, orange, yellow and green

Include also extra large semicircle (XL), area $\frac12\pi\times4^2 = 8\pi$

Whole circle has area $16\pi$

Red area: smallest + (XL $-$ large) $= \frac{\pi}2 + 8\pi - \frac{9\pi}2 = 4\pi$ which is $\frac14$ of $16\pi$

Orange area: (medium $-$ smallest) + (large $-$ medium) $=$ large $-$ smallest $= \frac{9\pi}2 - \frac{\pi}2 = 4\pi$

So each piece is $\frac14$ of the total area.

 

Red, orange, yellow, green and blue

XXL semicircle area $\frac12\pi\times5^2 = \frac{25\pi}2$

Whole circle has area $25\pi$

Red area: smallest + (XXL $-$ XL) $=\frac{\pi}2 + \frac{25\pi}2 - 8\pi = 5\pi$ which is $\frac15$ of the total area

Orange area: (medium $-$ smallest) + (XL - large) $= 2\pi - \frac{\pi}2 + 8\pi - \frac{9\pi}2 = 5\pi,$ also $\frac15$ of the total area

Yellow area: (large $-$ medium)$\times2 = \left(\frac{9\pi}2 - 2\pi\right)\times2 = 5\pi$

So each piece is $\frac15$ of the total area.

 

$m$ pieces

Largest piece has area $\frac{m^2\pi}2$ and whole circle has area $m^2\pi$

'Red' piece: 
$\begin{align}\frac{\pi}2 + \frac{m^2\pi}2 -  \frac{(m-1)^2\pi}2 &= \tfrac{\pi}2\left(1+m^2 -(m^1-2m+1\right) \\ &= m\pi\end{align}$

'Orange' piece:
$\begin{align} \left(2\pi - \frac{\pi}2\right) + \left(\frac{(m-1)^2\pi}2 - \frac{(m-2)^2\pi}2\right) &= \frac{\pi}2\left(4-1+\left(m^2-2m+1\right)-\left(m^2-4m+4\right)\right)\\ &= \tfrac{\pi}2\left(4m-2m\right)\\&=m\pi\end{align}$

General piece:
$\left(\frac{(r+1)^2\pi}2 - \frac{r^2\pi}2\right) + \left(\frac{(m-r)^2\pi}2 - \frac{(m-(r+1))^2\pi}2\right) \\
\begin{align} &= \tfrac{\pi}2\left((r+1)^2-r^2+\left(m^2-2mr+r^2\right)-\left(m^2-2m(r+1)+(r+1)^2\right)\right)\\ 
&= \tfrac{\pi}2\left(2m(r+1)-2mr\right)\\&=m\pi\end{align}$

$\therefore$ all of the pieces have the same area, $\frac1m$ of the total.

 

Related Collections

  • More Posters
  • Secondary Posters

You may also like

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo