Or search by topic
There are a few points worth thinking about when you tackle a problem like this:
Jacqui Eaves made a good attempt at this problem and Andrei Lazanu's work forms the basis of the solution below, well done Andrei.
The solution
First I calculated the angle between two sides of the
pentagon.
I used the formula for the sum of angles of a regular polygon, with
n sides, that is:
180 °(n-2)
For the pentagon, I obtained: $${180^{\circ}(n - 2)} = {180^{\circ}(5 - 2)} = {180^{\circ}\times 3} = {540^{\circ}}$$ Therefore the angle in each vertex is ${540^{\circ}\over5} = {108^{\circ}}$ $${\angle EAB}\equiv{\angle ABC}\equiv{\angle BCD}\equiv{\angle CDE}\equiv{\angle DEA} = {108^{\circ}}$$
Triangles CDE, DCB and AEB are isosceles (sides of pentagon are one unit) $${\angle DEC}\equiv{\angle DCE}\equiv{\angle BDC}\equiv {\angle CBD}\equiv{\angle AEB}\equiv{\angle ABE} = {{180^{\circ} - 108^{\circ}}\over2} = {72^{\circ}\over2} = {36^{\circ}}$$
Then I calculated other sets of equal angles: $${\angle DFC}\equiv{\angle EFB}= {180^{\circ} - 2\times 36^{\circ}} = {108^{\circ}}$$ $${\angle EFD}\equiv{\angle BFC}= {{360^{\circ} - 2\times 108^{\circ}}\over2} = {{360^{\circ} - 216^{\circ}}\over2} ={144^{\circ}\over2}= {72^{\circ}}$$ $${\angle EDF}\equiv{\angle BCF}= { 180^{\circ} - 36^{\circ} - 72^{\circ}} = { 72^{\circ}}$$ $${\angle BEF}\equiv{\angle EBF}= {{180^{\circ} - 108^{\circ}}\over2} = {72^{\circ}\over2} = {36^{\circ}}$$
Here are all the measures of the angles that I obtained:
Angles | Measures |
${\angle EAB}\equiv{\angle ABC}\equiv{\angle BCD}\equiv{\angle CDE}\equiv{\angle DEA}$ | 108 ° |
${\angle EAB}\equiv{\angle ABC}\equiv{\angle BCD}\equiv{\angle CDE}\equiv{\angle DEA}$ | 36 ° |
${\angle DFC}\equiv{\angle EFB}$ | 108 ° |
${\angle EFD}\equiv{\angle BFC}$ | 72 ° |
${\angle EDF}\equiv{\angle BCF}$ | 72 ° |
${\angle BEF}\equiv{\angle EBF}$ | 36 ° |
Triangles EFB and DFC are both isosceles, their corresponding angles are equal
I used the following notation:
Using the relationship obtained using the similarity of the triangles, I obtain: $${x\over1} = {1\over{r}}$$
I know that r = x + 1 because triangle BED is also
isosceles.
x and r are the solutions of the following system of two equations:
$${x\over1} = {1\over{r}}$$ $${x + 1} = {r}$$
I calculate the two numbers, x and r , substituting r from the second equation into the first. I obtain an equation of the form: $ax^2 + bx + c = 0$ Which has the solutions: $${x_1,x_2 }={-b\pm{\sqrt{{b^2}-4ac}}\over{2a}}$$
Solving the equation obtained for x, I obtain successively: $${x(x+1)} = {1}$$ $${x^2 + x} = {1}$$ $${x^2 + x - 1} = {0}$$ $${a = 1}, {b = 1} , {c = -1}$$ $${x_1} = {-1 + {\sqrt{1+4}}\over2} = {{-1 + \sqrt5}\over2} = {{ 1\over{2}} (\sqrt{5} - 1)}$$ $${x_2} = {{-1\sqrt5}\over2}$$
The last solution is not a solution for the problem, because x cannot be negative, but the first one is. So I proved that $${x } = {{ 1\over{2}} (\sqrt{5} - 1)}$$
Now I calculate r, that is x + 1. $${r} = {x + 1} = {{{\sqrt{5} - 1}\over2} + 1} = { {\sqrt{5} + 1}\over2}$$So the length of the chord EB of the pentagon is equal to the golden ratio $(\sqrt 5 + 1)/2$.
In conclusion: $${x } = {{ 1\over{2}} (\sqrt{5} - 1)}.$$ The ratio BF : FD is equal to $1/x$ so this ratio is $${2\over {\sqrt 5 -1}} ={ 2({\sqrt 5 + 1}) \over (\sqrt 5 - 1)( \sqrt 5 + 1)}= {\sqrt 5 + 1 \over 2}.$$ So F divides the chord BD in the golden ratio.
Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.
The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?