Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Vector Racer

Age 11 to 16
Challenge Level Yellow star
Secondary curriculum
  • Game
  • Teachers' Resources


Printable sheets: Instructions, race track 1, race track 2 (avoid the pits)
 

To play this game, you will need to print off a copy of the race track, and you will need someone to play with.


  

 

Rules:

Each player moves in turn, and uses vector notation to describe their moves around the race track.
Each player starts off from rest.
Each horizontal and vertical component cannot differ by more than two from the previous move.
For example, after a move of $\pmatrix{0\cr 2}$ the following moves are possible:
 

$\pmatrix{-2\cr 0}$ $\pmatrix{-1\cr 0}$ $\pmatrix{0\cr 0}$ $\pmatrix{1\cr 0}$ $\pmatrix{2\cr 0}$
$\pmatrix{-2\cr 1}$ $\pmatrix{-1\cr 1}$ $\pmatrix{0\cr 1}$ $\pmatrix{1\cr 1}$ $\pmatrix{2\cr 1}$
$\pmatrix{-2\cr 2}$ $\pmatrix{-1\cr 2}$ $\pmatrix{0\cr 2}$ $\pmatrix{1\cr 2}$ $\pmatrix{2\cr 2}$
$\pmatrix{-2\cr 3}$ $\pmatrix{-1\cr 3}$ $\pmatrix{0\cr 3}$ $\pmatrix{1\cr 3}$ $\pmatrix{2\cr 3}$
$\pmatrix{-2\cr 4}$ $\pmatrix{-1\cr 4}$ $\pmatrix{0\cr 4}$ $\pmatrix{1\cr 4}$ $\pmatrix{2\cr 4}$


Challenge a friend to a race.

Choose your starting positions and agree what the penalty will be for going off the track.

Who can get round in the fewest moves?
 

”‹Here is an alternative version you might like to try.
The challenge is to avoid the pits. 


Extension:

Who can get round in the shortest distance?

 

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Pair Sums

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Negative Dice

If the odd numbers on two dice are made negative, which of the totals cannot be achieved?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo