Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Square Subtraction

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

Nearly $80$ solutions were sent in! These had many examples that had even answers. We did suggest that you went a bit further and here we have some ideas.

First from OwenӬ from the Montessori School of Wooster, OhioӬ, USAӬ


A square number subtracted by its self (X squared - X) always has to be even. It will always be a even number because an even number times a odd number (3 x 3 = 3 x 2) is always even

(eg. 4 x 4 - 4 = 4 x 3 = 12, 5 x 5 - 5 = 4 x 5 = 20)

 

AmyӬ from Claremont PrimaryӬ School in the UKӬ had the following thoughts;

2 x 2 = 4
4 - 2 = 2 (even)
Answer is even with an even number starting point

3 x 3 = 9
9 - 3 = 6 (even)
Answer is even with an odd number starting point

Therefore answer is always even. Why?

The answer will always be even because an odd number squared makes another odd number. An even number squared makes an even number. And an even number take away another even number makes another even number. But quite strangely an odd number take away another odd number also makes an even number.

 

From Jasmine, Arran, Rebecca and Thomas Ӭat St. Mary's School ShawburyӬ in England , we had a similar thought;


The answer is even. We know this because, when you square an even number you always get an even number, but when you take an even number away from the number that you now have, you still remain an even number, no matter what number you started with.
When you square an odd number, it should result as another odd number, but when you subtract an odd number, from the number you have now, it will result as an even number.
e.g.  Even squared = even - even = even.
e.g.  Odd squared = odd - odd = even.

We tried this with $1,2,  3$ digit numbers and they all ended even, we also tried different odd and even numbers and found the same result, all the answers were even.

 

OllyӬ from Bourton Meadow AcademyӬ in EnglandӬ, wrote;


It is always even because the multiples of an even number are even
$(2a)(2a+1) = 6a$
If you use an odd number it is simply this formula backwards
$(2a+1)(2a) = 6a$

 

Finally Victor and Elliott”¨ from  Kenakena School”¨ in New Zealand”¨;

$X ² - X =$ even. If $X$ is odd. $X ²$ is odd. so $X ² - X = $ even.
If $X$ is even. $X ²$ is even. so $X ² - X = $even.

Side proof : how even - even = even and odd - odd = even:

If n and e are arbitrary whole numbers, then even = $2n$ (I think by this they mean that you can write an even number as $2n$), so even - even $= 2n - 2e = 2(n - e)$. Thereby, even - even = even.

So odd$ = 2n + 1$. So odd - odd = $2n + 1 - (2e + 1) = 2n - 2e + 1 - 1 = 2(n- e)$.
Thereby, odd minus odd = even.
 

We had a few very late in the month suggestions from Jack, Daniel, Sophiie, Isobel and Ryan at Keidmarch Primary School
 

Thank you all for your hard work and the emails.

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Roll These Dice

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

Domino Square

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo