Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Walking Round a Triangle

Age 5 to 7
Challenge Level Yellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Walking Round a Triangle


This ladybird is taking a walk round a triangle. She starts off near the middle of one side of the triangle. Can you see how much she has turned when she gets back to where she started?

Would it be the same amount of turn if she went around another triangle?

Why?


Why do this problem?

This problem offers a geometric context for a generic proof. A generic proof works by using the structure of a particular example to show the result in the general case. In this case walking round any triangle will involve making a complete turn. A complete turn taken in three stages will always create a three stage path or a triangle.

Possible approach

Get the children to draw triangle paths on paper or in chalk on the playground. If they do this outside they can walk along the triangle path themselves. They should start by facing along one of the lines on any of the sides. It is best to start part of the way along one side so that there is no confusion about the amount of turn involved to get to the same point facing the same way. When they get back to the starting point they will have turned through a complete turn. It is important to turn in the same direction (clockwise or anticlockwise) every time.

Key questions

Which way are you facing?

How much have you turned?

How many turns are you making to go round the triangle?

How much have you turned when you get back to where you started?

Possible extension

It would be possible to look at walking round a square, a pentagon, different quadrilaterals, and so on in the same way. The problem also links to Round a Hexagon.

Possible support

More support could be offered through using a robot and programming it to go around a triangle or other polygon. The children may find it helpful to use this sheet

You may also like

I'm Eight

Find a great variety of ways of asking questions which make 8.

Let's Investigate Triangles

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Noah

Noah saw 12 legs walk by into the Ark. How many creatures did he see?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo