Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Trig Reps

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Teachers' Resources

Why do this problem?

This problem introduces students to different definitions or representations of trigonometric functions and challenges them to consider when each different representation is most useful.

 

Possible approach

Start by inviting students to discuss in pairs how they would define $\sin x$ and $\cos x$, and then share these discussions as a group. It is likely that they will consider trigonometric functions defined in terms of right-angled triangles. (Note that the diagram in the problem gives a slightly unusual representation of this definition- this representation hints at double angle formulae and calculus and might itself provoke some discussion).

 

Introduce the two other representations from the problem. The representations are all available on this worksheet .

Next, invite students to think of as many properties of sin and cos that they can think of, and list them on the board. This worksheet lists the properties given in the problem, and includes some blank rows for any the students think of for themselves that they wish to work on.

"For each property, use the three representations to see if you can deduce the property. It might be easier in some representations than others, and it might be impossible in some representations! Make a note in each cell of the table whether it was easy, difficult or impossible to prove."

Give students time to work on the task in pairs or small groups. As they are working, circulate and listen for clear explanations or insights about the benefits and limitations of the three representations. Finally, invite students out to the board to explain their proofs for each property and to comment on the three representations.

 

Key questions

Which representation makes it easy to prove this?

Is it possible to prove this using all three representations?

 

Possible extension

Students who readily solve this challenge could be given the power series and exponential definitions of sinh and cosh and asked to reconstruct a table of properties of sinh and cosh by analogy. This extension would work well if encountered before formally meeting sinh and cosh. Those students who have met sinh and cosh might additionally be asked to construct an analogue of the first trig rep for the hyperbolic functions.

 

Possible support

The animation in Round and Round a Circle could be used as an introduction for students whose understanding of the right-angled triangle representation is not secure.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo