Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

What Numbers Can We Make Now?

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
Henry, from St. Hugh's, answered our question at the end:

If the bags contained 3s, 7s, 11s and 15s, can you describe a quick way to check whether it is possible to choose 30 numbers that will add up to 412?

He said the following:


It is impossible to make 412.
The starting number is 3 and the difference between the numbers is 4.
If I choose 30 numbers and add them all up, I will get a number that is 30x3=90 more than a multiple of 4.
But, 90÷4=22 remainder 2, so I will get a number that is 2 more than a multiple of 4.
But since 412 is a multiple of 4 (not 2 more than a multiple of 4), it won't work.

Well spotted! Luke, from Cottenham Village College, said this in a more algebraic way, using a tool called 'modular arithmetic':

All of our numbers are of the form 4x-1, for x=1, 2, 3 or 4. Therefore the sum of 30 of them comes to $4(x_1+x_2+\dots +x_{30})-30$, which is 2 mod 4 (i.e. 2 more than a multiple of 4). But 412 is 0 mod 4 (i.e. 0 more than a multiple of 4), so this sum cannot be equal to 412.

If you are unfamiliar with Modular Arithmetic, you might like to take a look at this introductory article.

Luke also gave his thoughts on the interactivity:


The numbers in the bag always form part of a linear arithmetic sequence, and so the number in the x-th bag is mx+c. Consecutive numbers are always a fixed distance m apart. This means that we can read off the value of m easily, and then find the value of c. We can then conclude that, if you choose z numbers from the bags, their sum will be of the form $m(x_1+x_2+\dots +x_z) + cz$, as all the numbers are of the form mx+c, for different values of x. This is obviously cz more than a multiple of m.

To illustrate this method with an example, take the numbers in the bag to be 1, 4, 7 and 10, as in the original example, with z=4.
Their differences are all a multiple of 3, so by analysing them mod 3 (i.e. by looking at their remainders when they are divided by 3) we find that they are all of the form 3x+1.
As z=4 and c=1, they must be cz=4 more than a multiple of 3.
Since 4 is 1 mod 3 (i.e. dividing 4 by 3 gives remainder 1), 4 numbers selected from the bags must add to give 1 more than a multiple of 3.

Nice!

Related Collections

  • From Particular to General

You may also like

Calendar Capers

Choose any three by three square of dates on a calendar page...

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Summing Consecutive Numbers

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo