Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Approximating Pi

Age 14 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem? 
This is a classic, the historical reference to Archimedes is educational, and the problem  should be part the education of every student of mathematics. To do this problem requires only very simple geometry and it introduces the idea of approximation by finding an upper and lower bounds, and refining the approximation by taking a series of values where, in this case, we use smaller and smaller edges, or more and more sides for the polygons. In addition this problem is a valuable pre-calculus experience as it uses the idea of a limiting process involving smaller and smaller ' bits'.
 
Possible Approach
First ask everyone to work out the perimeters of the two squares in the diagram. Then have a class discussion about what this tells us about how large the length of the circumference of a circle can be and how small. Discuss the history of this method with reference to Archimedes and introduce the idea that it is a method for finding the value of $\ pi$. Pose the problem: "How would you find the value of $\pi$ if it was not already known?"

Introduce the idea of an upper bound and a lower bound for pi and raise the question about how we might improve these bounds to get closer to the value of pi. Then ask the class to repeat the exercise using circumscribed and inscribed hexagons.and compare results.

Suggest your students researchArchimedes method for finding $\pi$ and other methods of approximating $\pi$ on the internet for themselves. Discuss the difficulties of calculation, in particular finding square roots, without modern calculating aids and refer to the problem Archimedes and Numerical Roots.

Key Questions
Can you find the perimeter of the square (or other regular polygon) circumscribing the circle?
Can you find the perimeter of the square  (or other regular polygon) inscribed inside the circle?
What can you say about the lengths of the perimeters of these two polygons and the length of the circumference of the circle?
Knowing the circumference is $2\pi r$ how does this help you find a lower and an upper bound for $\pi$.
 
Possible extension  
See Archimedes and Numerical Roots.  
 
Possible support  
Read  Eureka. 
 
 
 

  


 

You may also like

Shades of Fermat's Last Theorem

The familiar Pythagorean 3-4-5 triple gives one solution to (x-1)^n + x^n = (x+1)^n so what about other solutions for x an integer and n= 2, 3, 4 or 5?

Two Cubes

Two cubes, each with integral side lengths, have a combined volume equal to the total of the lengths of their edges. How big are the cubes? [If you find a result by 'trial and error' you'll need to prove you have found all possible solutions.]

Exhaustion

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo