Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Similarly So

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

Correct and quite different solutions were received from Natasha Kholgade (Indian Language School, Lagos) and Julia Collins (Langley Park School for Girls, England). I have included both of them below. There is a more concise geometrical proof not involving trigonometry for anyone who wants to have another go at this problem but it still depends on the vital insight, noted by Natasha, that APQD is a cyclic quadrilateral.

Natasha's solution:

Given: ABCD is a Square, P is the mid-point of AB and DQ is perpendicular to PC.

To Prove: AQ = AD

Construction: Construct line PR parallel to AD. Join BR.



We consider quadrilateral APCR.

Since BP ll CR and BC ll PR (both ll AD), BPRC is a rectangle and BP = CR Thus AP = BP = CR. Also AP ll CR. Hence APCR is a parallelogram.

Hence PC ll AR. PR is a transversal. Since alternate interior angles are equal,

angleAQP = angleRAQ ?(i)
angleRPQ = angleARP ?(ii)


Now we consider quadrilateral ABCD.

Given angleCQD = 90 o and anglePQD = 90 o . Thus angleCQD + angle PQD = 180 o and PADQ is a cyclic quadrilateral.

Angles in same segment are equal.

Hence angleAQP = angleARP ?(iii)
From (i) and (iii), angleRAQ = angleARP ?(iv)
From (ii) and (iii), angleRPQ = angleAQP ?(v)

Sides opposite equal angles of a triangle are equal.

Hence in triangle POQ, OP = OQ [from (v)] ?(vi)
and in triangleAOR, OR = OA [from (iv)]. ?(vii)

Adding (vi) and (vii), we get

OP + OR = OQ + OA

Or PR = AQ

Since PR ll AD (by construction) and AP ll RD, APRD is a rectangle.

Therefore AD = PR = AQ

Hence AD = AQ.

Julia's Solution

Let angle $BPC = \alpha$ and the side of the square = $a$

In triangle $BPC$, angle $BCP = 90 - \alpha$

In triangle $QDC$, angle $DCQ = \alpha (90 - \mbox{angle} BCP)$

In triangle $PBC$, $BP = \alpha/2$, $BC = (\alpha\sqrt{5})/2$, $\cos = 1/\sqrt{5}$

In triangle $QCD$,

$QC = a \cos\alpha = a/\sqrt{5}$

$PQ = PC - QC = (a\sqrt5)/2 - a/\sqrt{5} = (3a\sqrt{5})/10$

In triangle $AQD$ - using cosine rule: $$AQ^2 = AP^2 + PQ^2 - 2xAPxPQ \cos(180 - \alpha)$$ $$\quad= a^2/4 + 9a^2/20 - 3a^2\sqrt{5}/10(-\cos\alpha)$$ $$\quad = a^2/4 + 9a^2/20 - 3a^2\sqrt{5}/10(1/\sqrt{5})$$ $$\quad= a^2$$

$AQ = AD = a$


We received the following solution that uses some circle theorems to prove the result:

Angle BPC = angle APD (P is the midpoint of AB, so triangles PAD and PBC are congruent (SAS))

Also, PADQ is a cyclic quadrilateral, because angle PAD and angle CQD are both $90^{\circ}$, and a quadrilateral whose opposite angles add up to $180^{\circ}$ is cyclic.

Thus, angle ADQ = angle BPC, (because angle APQ + angle ADQ add up to $180^{\circ}$, and angles APQ and BPC are on a straight line so also add up to $180^{\circ}$

But angle BPC = angle APD, so angle ADQ = angle APD.
Angle APD and angle AQD are in the same segment so they are equal.

Therefore, triangle AQD is an isosceles triangle, so AQ = AD.

You may also like

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

Russian Cubes

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Polycircles

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo