Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Parallel Universe

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

A simple way to solve this is by considering M, the midpoint of BD:
 
The line joining M and Q (left) creates triangle QMC, which is similar to triangle ABC. So QMC is a right-angled triangle, with QM perpendicular to BC.

The line joining M and D (right) is a line of symmetry of triangle BCD. So MD is perpendicular to BC.

Since QM and MD are both perpendicular to BC, QMD is a straight line. So M lies on QD, and QD is perpendicular to BC.

But AB is also perpendicular to BC, so QD is parallel to AB.


Emily from Wimbledon High School solved this by using vectors to find the cartesian co-ordinates of the points.

Let $B$ be the origin. Then align the triangles so $A$ is vertically above $B$, so the co-ordinates of $A$ are $(0,a)$.By the right angle $C$ is horizontally across from $B$, so $C$ is $(c,0)$. Then $Q$ is $\left(\frac{c}{2},\frac{a}{2}\right)$.

By some basic trigonometry we can find the coordinates of $D$, as $BCD$ is an equilateral triangle we know all its angles are $60^\circ$ and all its sides are equal. By considering the perpendicular from $BC$ to $D$, we find the horizontal component of $D$ is $d\times \cos{60}$ and the length $BD=d$ is equal to $BC=c$ so $d\times \cos{60}=\frac{c}{2}$. The vertical component is $d\times \sin{60}=c\frac{3^{1/2}}{2}$.

But the vertical component does not matter, the point is that $D$ and $Q$ have the same horizontal component, so a straight line between them will cross through $BC$ and will be vertical, and hence parallel to $BA$

You may also like

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

Russian Cubes

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Polycircles

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo