Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

A Right Charlie

Age 7 to 11
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

The following solution was offered by Trevor of Riccarton High School, Christchruch, New Zealand. Other correct solutions were received from Andrei (School 205, Bucharest), Mary (Birchwood Community High School), Rachel and Sebastian (Hethersett High School) and Claire.


Well first, I found all three digit numbers which are square numbers...

$10^2 = 100$
$11^2 = 121$
$12^2 = 144$
$13^2 = 169$
$14^2 = 196$
$15^2 = 225$
$16^2 = 256$
$17^2 = 289$
$18^2 = 324$
$19^2 = 361$
$20^2 = 400$
$21^2 = 441$
$22^2 = 484$
$23^2 = 529$
$24^2 = 576$
$25^2 = 625$
$26^2 = 676$
$27^2 = 729$
$28^2 = 784$
$29^2 = 841$
$30^2 = 900$
$31^2 = 961$

...then I searched for pairs of square numbers that when one is reversed, it will be the same as the second, but not including paladromic numbers...

pairs: $144$, $4414

$169$, $961$

...then the final clue is that Charle's car registration number is a four digit number which is also a square number
as well, and is formed by repeating the last digit of the house number, and using the numbers which I have picked...

$1444$, $4411$
$1699$, $9611$

...I can pick a square number from here, if there is one......$1444$ is a square of $38$! So that means that $144$ is the
house number!


You may also like

Cuisenaire Squares

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Making Boxes

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Special 24

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo