Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Take a Square

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

Correct solutions were received from Thomas and from Isabelle of Lathallan School. Well done to both! Here is Isabelle's solution, with diagrams added by the editor.

I redrew the pentagon inside a $3 \times 3$ grid of $9$ small squares (all the same size). The across lines were $ABCD$; $EFGH$; $IJKL$; $MNOP$. The down lines were $AEIM$; $BFJN$; $CGKO$; $DHLP$. The pentagon was $BGOMEB$. (This is shown on the diagram below, with the pentagon drawn in blue. Can you see why this is the same as the original pentagon? --Ed.)

Pentagon on grid
As lines $EB$ and $BG$ cut their small squares into halves, the triangle $EBG$ has the same area as each of the nine small squares. The rest of the pentagon is $4$ small squares so all of it is the same as $5$ small squares. The whole area is $9$ small squares so I need to find a square inside, which is just $4$ small squares smaller. Then I noticed that if I drew line $IO$, it would cut the rectangle $IKOM$ in half, making triangle $IMO$ the same as $1$ small square. Then I saw that I could draw $BIOH$ as a square which is surrounded by $4$ triangles each $1$ small square in size. (This is shown in red on the second diagram -- Ed.)
Pentagon on grid with cuts
So this new square is $9 - 4 = 5$ small squares in size. Now I could see that if I cut out $EBI$ from the original pentagon, it would fit into $BGH$, and $IMO$ would fit into $OGH$. This means that I could turn the pentagon into a square by cutting along $BI$ and along $IO$ and simply rearranging the pieces.

A slightly different approach was taken by Thomas, whose solution is given below. Can you see the similarities and differences between the two ways of solving the problem? (Again, the editor has added diagrams.)

From the midpoint of the left side of the square, draw a line to the midpoint of the diagonal connecting the bottom and right sides ($BF$). From this point, draw the second line to the upper right corner of the square ($FE$).
Pentagon with cuts
Why? $3/8$ of the square is lost when the triangles are cut away, so, assuming a unit square, the area of the pentagon (and subsequent square) is $5/8$; this requires a new square with sides of length $\frac{\sqrt{10}}{4}$.

The first line makes a triangle ($BCF$) that, once flipped over and placed with $BC$ along edge $AB$, makes a right angle and two sides of the desired length. We can check that $BF$ is of the right length using Pythagoras' theorem.

Triangle $DEF$, formed by the second line, has a longest side also of the desired length. We know the lengths of $DE$ and $DF$ ($\frac{1}{2}$ and $\frac{\sqrt{2}}{4}$) and the angle $EDF$ between them ($135$ degrees) and so can use the law of cosines $(c^2 = a^2 + b^2 - 2 a b \cos C)$. This gives $$EF^2 =\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{2}}{4}\right)^2 - 2 \frac{1}{2} \frac{\sqrt{2}}{4} \frac{-\sqrt{2}}{2} =\frac{5}{8}; $$ thus $$EF = \sqrt{\frac{5}{8}} = \frac{\sqrt{10}}{4}$$ Thus if we move the second triangle so that $DE$ lies along $AD$, we see that we have formed a square of side $\frac{\sqrt{10}}{4}$.

The rearrangement is shown below.

Pentagon solution


You may also like

Compare Areas

Which has the greatest area, a circle or a square, inscribed in an isosceles right angle triangle?

Semi-detached

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Diagonal Touch

Weekly Problem 21 - 2012
Two rectangles are drawn in a rectangle. What fraction of the rectangle is shaded?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo