Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

The Root of the Problem

Age 14 to 18
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem

This problem offers students an opportunity to practise manipulating surds in the denominator, and highlights the importance of not rounding off prematurely, as by keeping surds in the calculation and simplifying as much as possible, a pleasing answer emerges that might be hidden if students used a calculator and rounded their answers along the way.

 

Possible approach

Invite students to use spreadsheets to sum parts of the sequence: $$\frac{1}{\sqrt{1}+ \sqrt{2}}+ \frac{1}{\sqrt{2}+ \sqrt{3}} + ... +\frac{1}{ \sqrt {99}+ \sqrt{100}}.$$

We hope students will be surprised when they notice that at various points in the sequence, the sum is a whole number, and that they will conjecture about when this happens and wish to explain it. They may need reminding about techniques to rationalise the denominator.

 

 

Key questions

For which values of $n$ does the series give whole numbers?
Why might that be?
Can we express $\frac{1}{\sqrt{n}+\sqrt{n+1}}$ in a way that the surds are in the numerator rather than the denominator?

 

Possible support

Students could start by finding an expression for $\frac{1}{\sqrt{1}+ \sqrt{2}}+ \frac{1}{\sqrt{2}+ \sqrt{3}}$ and then add subsequent terms.

Possible extension

Irrational Arithmagons and Ab Surd Ity are both challenging problems involving the manipulation of surds.

 

 

 

 

 

 

You may also like

Telescoping Series

Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.

Degree Ceremony

Can you find the sum of the squared sine values?

OK! Now Prove It

Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo