Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Master Minding

Age 11 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

Picture of beads on either side of screen - as if partner is guessing the choice and position of the beadsYou have any number of beads of three different colours (red, yellow and blue).

Your partner chooses any two beads and places them side by side on two spikes hidden behind a screen.

If you have to guess the two beads and their positions by placing two beads, on pairs of pegs, on the table in front of the screen - what is the minimum number of guesses you would need to be sure of getting it right?

If, every time you put two beads down, your partner gives you feedback in the following form. What would be the minumum number of goes you would now need to be sure of getting it right?

  • For each bead you choose of the right colour but put it in the wrong place you get one point
  • For each bead you choose of the right colour that you put in the right position you get two points.
  • Your partner tells you the total number of points.

So two points could mean one of your beads is the right colour and in the right place or the two beads are the right colours but in the wrong places.

What is the best strategy for getting the correct answer in the least number of moves? (e.g. should you put two beads of the same colour first? Then what?)

You may also like

Calendar Capers

Choose any three by three square of dates on a calendar page...

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Summing Consecutive Numbers

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo